Cargando…
Unsupervised learning to characterize patients with known coronary artery disease undergoing myocardial perfusion imaging
PURPOSE: Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD unde...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317876/ https://www.ncbi.nlm.nih.gov/pubmed/37067586 http://dx.doi.org/10.1007/s00259-023-06218-z |