Cargando…

Unsupervised learning to characterize patients with known coronary artery disease undergoing myocardial perfusion imaging

PURPOSE: Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Michelle C., Bednarski, Bryan P., Pieszko, Konrad, Miller, Robert J. H., Kwiecinski, Jacek, Shanbhag, Aakash, Liang, Joanna X., Huang, Cathleen, Sharir, Tali, Dorbala, Sharmila, Di Carli, Marcelo F., Einstein, Andrew J., Sinusas, Albert J., Miller, Edward J., Bateman, Timothy M., Fish, Mathews B., Ruddy, Terrence D., Acampa, Wanda, Hauser, M. Timothy, Kaufmann, Philipp A., Dey, Damini, Berman, Daniel S., Slomka, Piotr J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317876/
https://www.ncbi.nlm.nih.gov/pubmed/37067586
http://dx.doi.org/10.1007/s00259-023-06218-z

Ejemplares similares