Cargando…
Unsupervised learning to characterize patients with known coronary artery disease undergoing myocardial perfusion imaging
PURPOSE: Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD unde...
Autores principales: | Williams, Michelle C., Bednarski, Bryan P., Pieszko, Konrad, Miller, Robert J. H., Kwiecinski, Jacek, Shanbhag, Aakash, Liang, Joanna X., Huang, Cathleen, Sharir, Tali, Dorbala, Sharmila, Di Carli, Marcelo F., Einstein, Andrew J., Sinusas, Albert J., Miller, Edward J., Bateman, Timothy M., Fish, Mathews B., Ruddy, Terrence D., Acampa, Wanda, Hauser, M. Timothy, Kaufmann, Philipp A., Dey, Damini, Berman, Daniel S., Slomka, Piotr J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317876/ https://www.ncbi.nlm.nih.gov/pubmed/37067586 http://dx.doi.org/10.1007/s00259-023-06218-z |
Ejemplares similares
-
Time and event-specific deep learning for personalized risk assessment after cardiac perfusion imaging
por: Pieszko, Konrad, et al.
Publicado: (2023) -
Artificial intelligence in cardiovascular imaging: enhancing image analysis and risk stratification
por: Lin, Andrew, et al.
Publicado: (2023) -
Aortic valve imaging using (18)F-sodium fluoride: impact of triple motion correction
por: Lassen, Martin Lyngby, et al.
Publicado: (2022) -
Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT
por: Xu, Yuan, et al.
Publicado: (2010) -
Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
por: Lin, Andrew, et al.
Publicado: (2022)