Cargando…

Local solvation structures govern the mixing thermodynamics of glycerol–water solutions

Glycerol is a major cryoprotective agent and is widely used to promote protein stabilization. By a combined experimental and theoretical study, we show that global thermodynamic mixing properties of glycerol and water are dictated by local solvation motifs. We identify three hydration water populati...

Descripción completa

Detalles Bibliográficos
Autores principales: Das Mahanta, Debasish, Brown, Dennis Robinson, Pezzotti, Simone, Han, Songi, Schwaab, Gerhard, Shell, M. Scott, Havenith, Martina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321518/
https://www.ncbi.nlm.nih.gov/pubmed/37416713
http://dx.doi.org/10.1039/d3sc00517h
Descripción
Sumario:Glycerol is a major cryoprotective agent and is widely used to promote protein stabilization. By a combined experimental and theoretical study, we show that global thermodynamic mixing properties of glycerol and water are dictated by local solvation motifs. We identify three hydration water populations, i.e., bulk water, bound water (water hydrogen bonded to the hydrophilic groups of glycerol) and cavity wrap water (water hydrating the hydrophobic moieties). Here, we show that for glycerol experimental observables in the THz regime allow quantification of the abundance of bound water and its partial contribution to the mixing thermodynamics. Specifically, we uncover a 1 : 1 connection between the population of bound waters and the mixing enthalpy, which is further corroborated by the simulation results. Therefore, the changes in global thermodynamic quantity – mixing enthalpy – are rationalized at the molecular level in terms of changes in the local hydrophilic hydration population as a function of glycerol mole fraction in the full miscibility range. This offers opportunities to rationally design polyol water, as well as other aqueous mixtures to optimize technological applications by tuning mixing enthalpy and entropy based on spectroscopic screening.