Cargando…

Atomistic simulations of the Escherichia coli ribosome provide selection criteria for translationally active substrates

As genetic code expansion advances beyond l-α-amino acids to backbone modifications and new polymerization chemistries, delineating what substrates the ribosome can accommodate remains a challenge. The Escherichia coli ribosome tolerates non-l-α-amino acids in vitro, but few structural insights that...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Zoe L., Knudson, Isaac J., Ward, Fred R., Miller, Scott J., Cate, Jamie H. D., Schepartz, Alanna, Abramyan, Ara M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322701/
https://www.ncbi.nlm.nih.gov/pubmed/37308707
http://dx.doi.org/10.1038/s41557-023-01226-w
Descripción
Sumario:As genetic code expansion advances beyond l-α-amino acids to backbone modifications and new polymerization chemistries, delineating what substrates the ribosome can accommodate remains a challenge. The Escherichia coli ribosome tolerates non-l-α-amino acids in vitro, but few structural insights that explain how are available, and the boundary conditions for efficient bond formation are so far unknown. Here we determine a high-resolution cryogenic electron microscopy structure of the E. coli ribosome containing α-amino acid monomers and use metadynamics simulations to define energy surface minima and understand incorporation efficiencies. Reactive monomers across diverse structural classes favour a conformational space where the aminoacyl-tRNA nucleophile is <4 Å from the peptidyl-tRNA carbonyl with a Bürgi–Dunitz angle of 76–115°. Monomers with free energy minima that fall outside this conformational space do not react efficiently. This insight should accelerate the in vivo and in vitro ribosomal synthesis of sequence-defined, non-peptide heterooligomers. [Image: see text]