Cargando…
MOKPE: drug–target interaction prediction via manifold optimization based kernel preserving embedding
BACKGROUND: In many applications of bioinformatics, data stem from distinct heterogeneous sources. One of the well-known examples is the identification of drug–target interactions (DTIs), which is of significant importance in drug discovery. In this paper, we propose a novel framework, manifold opti...
Autores principales: | Binatlı, Oğuz C., Gönen, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324162/ https://www.ncbi.nlm.nih.gov/pubmed/37407927 http://dx.doi.org/10.1186/s12859-023-05401-1 |
Ejemplares similares
-
Embeddings in manifolds
por: Daverman, Robert J, et al.
Publicado: (2009) -
Kernel Manifold Alignment for Domain Adaptation
por: Tuia, Devis, et al.
Publicado: (2016) -
Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
por: Gönen, Mehmet, et al.
Publicado: (2014) -
Motor Imagery Classification via Kernel-Based Domain Adaptation on an SPD Manifold
por: Jiang, Qin, et al.
Publicado: (2022) -
Assessing and predicting protein interactions by combining manifold embedding with multiple information integration
por: Lei, Ying-Ke, et al.
Publicado: (2012)