Cargando…
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
MOTIVATION: Accurate identification of Drug-Target Interactions (DTIs) plays a crucial role in many stages of drug development and drug repurposing. (i) Traditional methods do not consider the use of multi-source data and do not consider the complex relationship between data sources. (ii) How to bet...
Autores principales: | Zhang, Yuanyuan, Feng, Yinfei, Wu, Mengjie, Deng, Zengqian, Wang, Shudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324201/ https://www.ncbi.nlm.nih.gov/pubmed/37415176 http://dx.doi.org/10.1186/s12859-023-05387-w |
Ejemplares similares
-
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
por: Wang, Shudong, et al.
Publicado: (2022) -
Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder
por: Chen, Peng, et al.
Publicado: (2023) -
Drug repositioning based on heterogeneous networks and variational graph autoencoders
por: Lei, Song, et al.
Publicado: (2022) -
A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations
por: Shi, Zhuangwei, et al.
Publicado: (2021) -
Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks
por: Yang, Yongjian, et al.
Publicado: (2023)