Cargando…

Downregulation of VEGFR2 signaling by cedrol abrogates VEGF‑driven angiogenesis and proliferation of glioblastoma cells through AKT/P70S6K and MAPK/ERK1/2 pathways

Cedrol is a sesquiterpene alcohol isolated from Cedrus atlantica, which has been traditionally used in aromatherapy and has anticancer, antibacterial and antihyperalgesic effects. One characteristic of glioblastoma (GB) is the overexpression of vascular endothelial growth factor (VEGF), which induce...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Kai-Fu, Liu, Che-Yu, Huang, Ya-Chih, Hsiao, Chih-Yen, Tsai, Nu-Man
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326829/
https://www.ncbi.nlm.nih.gov/pubmed/37427338
http://dx.doi.org/10.3892/ol.2023.13928
Descripción
Sumario:Cedrol is a sesquiterpene alcohol isolated from Cedrus atlantica, which has been traditionally used in aromatherapy and has anticancer, antibacterial and antihyperalgesic effects. One characteristic of glioblastoma (GB) is the overexpression of vascular endothelial growth factor (VEGF), which induces a high degree of angiogenesis. Although previous studies have reported that cedrol inhibits GB growth by inducing DNA damage, cell cycle arrest and apoptosis, its role in angiogenesis remains unclear. The aim of the present study was to investigate the effects of cedrol on VEGF-induced angiogenesis of human umbilical vein endothelial cells (HUVECs). HUVECs were treated with 0–112 µM cedrol and 20 ng/ml VEGF for 0–24 h, and then anti-angiogenic activation of cedrol was determined by MTT assay, wound healing assay, Boyden chamber assay, tube formation assay, semi-quantitative reverse transcription-PCR and western blotting. These results demonstrated that cedrol treatment inhibited VEGF-induced cell proliferation, migration and invasion in HUVECs. Furthermore, cedrol prevented VEGF and DBTRG-05MG GB cells from inducing capillary-like tube formation in HUVECs and decreased the number of branch points formed. Moreover, cedrol downregulated the phosphorylation of VEGF receptor 2 (VEGFR2) and the expression levels of its downstream mediators AKT, ERK, VCAM-1, ICAM-1 and MMP-9 in HUVECs and DBTRG-05MG cells. Taken together, these results demonstrated that cedrol exerts anti-angiogenic effects by blocking VEGFR2 signaling, and thus could be developed into health products or therapeutic agents for the prevention or treatment of cancer and angiogenesis-related diseases in the future.