4-methylumbelliferone (4-MU) enhances drought tolerance of apple by regulating rhizosphere microbial diversity and root architecture

The dwarfing rootstocks-mediated high-density apple orchard is becoming the main practice management. Currently, dwarfing rootstocks are widely used worldwide, but their shallow root system and drought sensitivity necessitate high irrigation requirements. Here, the root transcriptome and metabolome...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dehui, He, Jieqiang, Cheng, Pengda, Zhang, Yutian, Khan, Abid, Wang, Shicong, Li, Zhongxing, Zhao, Shuang, Zhan, Xiangqiang, Ma, Fengwang, Li, Xuewei, Guan, Qingmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327542/
https://www.ncbi.nlm.nih.gov/pubmed/37427035
http://dx.doi.org/10.1093/hr/uhad099
Descripción
Sumario:The dwarfing rootstocks-mediated high-density apple orchard is becoming the main practice management. Currently, dwarfing rootstocks are widely used worldwide, but their shallow root system and drought sensitivity necessitate high irrigation requirements. Here, the root transcriptome and metabolome of dwarfing (M9-T337, a drought-sensitive rootstock) and vigorous rootstocks (Malus sieversii, a drought-tolerant species, is commonly used as a rootstock) showed that a coumarin derivative, 4-Methylumbelliferon (4-MU), was found to accumulate significantly in the roots of vigorous rootstock under drought condition. When exogenous 4-MU was applied to the roots of dwarfing rootstock under drought treatment, the plants displayed increased root biomass, higher root-to-shoot ratio, greater photosynthesis, and elevated water use efficiency. In addition, diversity and structure analysis of the rhizosphere soil microbial community demonstrated that 4-MU treatment increased the relative abundance of putatively beneficial bacteria and fungi. Of these, Pseudomonas, Bacillus, Streptomyces, and Chryseolinea bacterial strains and Acremonium, Trichoderma, and Phoma fungal strains known for root growth, or systemic resistance against drought stress, were significantly accumulated in the roots of dwarfing rootstock after 4-MU treatment under drought stress condition. Taken together, we identified a promising compound—4-MU, as a useful tool, to strengthen the drought tolerance of apple dwarfing rootstock.