Cargando…

Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization

OBJECTIVES: This experimental study aims to investigate the role of long noncoding RNA X-inactive specific transcript (lncRNA XIST) in the microglial polarization and microglia-mediated neurotoxicity in Alzheimer’s disease (AD). METHODS: The levels of XIST and microRNA-107 (miR-107) were detected by...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Kun-Peng, Wang, Xin-Yu, Shao, Mei-Qi, He, Chen-Yang, Yuan, Fu-Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328177/
https://www.ncbi.nlm.nih.gov/pubmed/37400958
http://dx.doi.org/10.1177/03946320231184988
_version_ 1785069744012918784
author Zhao, Kun-Peng
Wang, Xin-Yu
Shao, Mei-Qi
He, Chen-Yang
Yuan, Fu-Qiang
author_facet Zhao, Kun-Peng
Wang, Xin-Yu
Shao, Mei-Qi
He, Chen-Yang
Yuan, Fu-Qiang
author_sort Zhao, Kun-Peng
collection PubMed
description OBJECTIVES: This experimental study aims to investigate the role of long noncoding RNA X-inactive specific transcript (lncRNA XIST) in the microglial polarization and microglia-mediated neurotoxicity in Alzheimer’s disease (AD). METHODS: The levels of XIST and microRNA-107 (miR-107) were detected by quantitative real-time polymerase chain reaction. The spatial learning and memory capability of APPswe/PS1dE9 (APP/PS1) mice were evaluated by the Morris water maze test. The morphology of mouse hippocampus cells was evaluated by hematoxylin and eosin staining. The Iba1-positive microglia were labeled by immunohistochemistry staining. The protein levels were determined by western blot and enzyme-linked immunosorbent assay. Neurotoxicity was evaluated by the terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling, caspase-3 activity, and Cell Counting Kit-8 assay. The XIST, miR-107, and AD targets were predicted by bioinformatics analysis. RESULTS: The level of XIST was increased in APP/PS1 mice, and XIST silencing ameliorated AD progression. XIST silencing suppressed microglia activation, microglial M1 polarization, and proinflammatory factor levels, but promoted microglial M2 polarization in APP/PS1 mice and Aβ1-42-treated BV-2 cells. XIST knockdown reduced Aβ1-42-induced microglia-mediated apoptosis and enhanced cell viability in HT22 cells. XIST silencing down-regulated miR-107 level and attenuated Aβ(1-42)-caused suppression of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Those effects of XIST silencing were attenuated by miR-107 inhibitor or LY294002. CONCLUSION: Downregulation of XIST lessened Aβ1-42-induced microglia-mediated neurotoxicity by modulating microglial M1/M2 polarization, which may be mediated by the miR-107/PI3K/Akt pathway.
format Online
Article
Text
id pubmed-10328177
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-103281772023-07-08 Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization Zhao, Kun-Peng Wang, Xin-Yu Shao, Mei-Qi He, Chen-Yang Yuan, Fu-Qiang Int J Immunopathol Pharmacol Original Research Article OBJECTIVES: This experimental study aims to investigate the role of long noncoding RNA X-inactive specific transcript (lncRNA XIST) in the microglial polarization and microglia-mediated neurotoxicity in Alzheimer’s disease (AD). METHODS: The levels of XIST and microRNA-107 (miR-107) were detected by quantitative real-time polymerase chain reaction. The spatial learning and memory capability of APPswe/PS1dE9 (APP/PS1) mice were evaluated by the Morris water maze test. The morphology of mouse hippocampus cells was evaluated by hematoxylin and eosin staining. The Iba1-positive microglia were labeled by immunohistochemistry staining. The protein levels were determined by western blot and enzyme-linked immunosorbent assay. Neurotoxicity was evaluated by the terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling, caspase-3 activity, and Cell Counting Kit-8 assay. The XIST, miR-107, and AD targets were predicted by bioinformatics analysis. RESULTS: The level of XIST was increased in APP/PS1 mice, and XIST silencing ameliorated AD progression. XIST silencing suppressed microglia activation, microglial M1 polarization, and proinflammatory factor levels, but promoted microglial M2 polarization in APP/PS1 mice and Aβ1-42-treated BV-2 cells. XIST knockdown reduced Aβ1-42-induced microglia-mediated apoptosis and enhanced cell viability in HT22 cells. XIST silencing down-regulated miR-107 level and attenuated Aβ(1-42)-caused suppression of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Those effects of XIST silencing were attenuated by miR-107 inhibitor or LY294002. CONCLUSION: Downregulation of XIST lessened Aβ1-42-induced microglia-mediated neurotoxicity by modulating microglial M1/M2 polarization, which may be mediated by the miR-107/PI3K/Akt pathway. SAGE Publications 2023-07-03 /pmc/articles/PMC10328177/ /pubmed/37400958 http://dx.doi.org/10.1177/03946320231184988 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research Article
Zhao, Kun-Peng
Wang, Xin-Yu
Shao, Mei-Qi
He, Chen-Yang
Yuan, Fu-Qiang
Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization
title Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization
title_full Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization
title_fullStr Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization
title_full_unstemmed Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization
title_short Silencing of long noncoding RNA X-inactive specific transcript alleviates Aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization
title_sort silencing of long noncoding rna x-inactive specific transcript alleviates aβ1-42-induced microglia-mediated neurotoxicity by shifting microglial m1/m2 polarization
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328177/
https://www.ncbi.nlm.nih.gov/pubmed/37400958
http://dx.doi.org/10.1177/03946320231184988
work_keys_str_mv AT zhaokunpeng silencingoflongnoncodingrnaxinactivespecifictranscriptalleviatesab142inducedmicrogliamediatedneurotoxicitybyshiftingmicroglialm1m2polarization
AT wangxinyu silencingoflongnoncodingrnaxinactivespecifictranscriptalleviatesab142inducedmicrogliamediatedneurotoxicitybyshiftingmicroglialm1m2polarization
AT shaomeiqi silencingoflongnoncodingrnaxinactivespecifictranscriptalleviatesab142inducedmicrogliamediatedneurotoxicitybyshiftingmicroglialm1m2polarization
AT hechenyang silencingoflongnoncodingrnaxinactivespecifictranscriptalleviatesab142inducedmicrogliamediatedneurotoxicitybyshiftingmicroglialm1m2polarization
AT yuanfuqiang silencingoflongnoncodingrnaxinactivespecifictranscriptalleviatesab142inducedmicrogliamediatedneurotoxicitybyshiftingmicroglialm1m2polarization