Cargando…
SUNi mutagenesis: Scalable and uniform nicking for efficient generation of variant libraries
Multiplexed assays of variant effects (MAVEs) have made possible the functional assessment of all possible mutations to genes and regulatory sequences. A core pillar of the approach is generation of variant libraries, but current methods are either difficult to scale or not uniform enough to enable...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328370/ https://www.ncbi.nlm.nih.gov/pubmed/37418460 http://dx.doi.org/10.1371/journal.pone.0288158 |
Sumario: | Multiplexed assays of variant effects (MAVEs) have made possible the functional assessment of all possible mutations to genes and regulatory sequences. A core pillar of the approach is generation of variant libraries, but current methods are either difficult to scale or not uniform enough to enable MAVEs at the scale of gene families or beyond. We present an improved method called Scalable and Uniform Nicking (SUNi) mutagenesis that combines massive scalability with high uniformity to enable cost-effective MAVEs of gene families and eventually genomes. |
---|