Cargando…
Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity
The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329148/ https://www.ncbi.nlm.nih.gov/pubmed/37426354 http://dx.doi.org/10.1016/j.isci.2023.106964 |
_version_ | 1785069960485142528 |
---|---|
author | Najafi, Annice Jolly, Mohit K. George, Jason T. |
author_facet | Najafi, Annice Jolly, Mohit K. George, Jason T. |
author_sort | Najafi, Annice |
collection | PubMed |
description | The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data. |
format | Online Article Text |
id | pubmed-10329148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103291482023-07-09 Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity Najafi, Annice Jolly, Mohit K. George, Jason T. iScience Article The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data. Elsevier 2023-06-05 /pmc/articles/PMC10329148/ /pubmed/37426354 http://dx.doi.org/10.1016/j.isci.2023.106964 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Najafi, Annice Jolly, Mohit K. George, Jason T. Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity |
title | Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity |
title_full | Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity |
title_fullStr | Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity |
title_full_unstemmed | Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity |
title_short | Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity |
title_sort | population dynamics of emt elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329148/ https://www.ncbi.nlm.nih.gov/pubmed/37426354 http://dx.doi.org/10.1016/j.isci.2023.106964 |
work_keys_str_mv | AT najafiannice populationdynamicsofemtelucidatesthetiminganddistributionofphenotypicintratumoralheterogeneity AT jollymohitk populationdynamicsofemtelucidatesthetiminganddistributionofphenotypicintratumoralheterogeneity AT georgejasont populationdynamicsofemtelucidatesthetiminganddistributionofphenotypicintratumoralheterogeneity |