Cargando…
Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback
The aryl hydrocarbon receptor (AHR) exerts major roles in xenobiotic metabolism, and in immune and barrier tissue homeostasis. How AHR activity is regulated by the availability of endogenous ligands is poorly understood. Potent AHR ligands have been shown to exhibit a negative feedback loop through...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331327/ https://www.ncbi.nlm.nih.gov/pubmed/37434789 http://dx.doi.org/10.1177/11786469231182508 |
_version_ | 1785070234032406528 |
---|---|
author | Dong, Fangcong Annalora, Andrew J Murray, Iain A Tian, Yuan Marcus, Craig B Patterson, Andrew D Perdew, Gary H |
author_facet | Dong, Fangcong Annalora, Andrew J Murray, Iain A Tian, Yuan Marcus, Craig B Patterson, Andrew D Perdew, Gary H |
author_sort | Dong, Fangcong |
collection | PubMed |
description | The aryl hydrocarbon receptor (AHR) exerts major roles in xenobiotic metabolism, and in immune and barrier tissue homeostasis. How AHR activity is regulated by the availability of endogenous ligands is poorly understood. Potent AHR ligands have been shown to exhibit a negative feedback loop through induction of CYP1A1, leading to metabolism of the ligand. Our recent study identified and quantified 6 tryptophan metabolites (eg, indole-3-propionic acid, and indole-3-acetic acid) in mouse and human serum, generated by the host and gut microbiome, that are present in sufficient concentrations to individually activate the AHR. Here, these metabolites are not significantly metabolized by CYP1A1/1B1 in an in vitro metabolism assay. In contrast, CYP1A1/1B metabolizes the potent endogenous AHR ligand 6-formylindolo[3,2b]carbazole. Furthermore, molecular modeling of these 6 AHR activating tryptophan metabolites within the active site of CYP1A1/1B1 reveal metabolically unfavorable docking profiles with regard to orientation with the catalytic heme center. In contrast, docking studies confirmed that 6-formylindolo[3,2b]carbazole would be a potent substrate. The lack of CYP1A1 expression in mice fails to influence serum levels of the tryptophan metabolites examined. In addition, marked induction of CYP1A1 by PCB126 exposure in mice failed to alter the serum concentrations of these tryptophan metabolites. These results suggest that certain circulating tryptophan metabolites are not susceptible to an AHR negative feedback loop and are likely important factors that mediate constitutive but low level systemic human AHR activity. |
format | Online Article Text |
id | pubmed-10331327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-103313272023-07-11 Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback Dong, Fangcong Annalora, Andrew J Murray, Iain A Tian, Yuan Marcus, Craig B Patterson, Andrew D Perdew, Gary H Int J Tryptophan Res Original Research Article The aryl hydrocarbon receptor (AHR) exerts major roles in xenobiotic metabolism, and in immune and barrier tissue homeostasis. How AHR activity is regulated by the availability of endogenous ligands is poorly understood. Potent AHR ligands have been shown to exhibit a negative feedback loop through induction of CYP1A1, leading to metabolism of the ligand. Our recent study identified and quantified 6 tryptophan metabolites (eg, indole-3-propionic acid, and indole-3-acetic acid) in mouse and human serum, generated by the host and gut microbiome, that are present in sufficient concentrations to individually activate the AHR. Here, these metabolites are not significantly metabolized by CYP1A1/1B1 in an in vitro metabolism assay. In contrast, CYP1A1/1B metabolizes the potent endogenous AHR ligand 6-formylindolo[3,2b]carbazole. Furthermore, molecular modeling of these 6 AHR activating tryptophan metabolites within the active site of CYP1A1/1B1 reveal metabolically unfavorable docking profiles with regard to orientation with the catalytic heme center. In contrast, docking studies confirmed that 6-formylindolo[3,2b]carbazole would be a potent substrate. The lack of CYP1A1 expression in mice fails to influence serum levels of the tryptophan metabolites examined. In addition, marked induction of CYP1A1 by PCB126 exposure in mice failed to alter the serum concentrations of these tryptophan metabolites. These results suggest that certain circulating tryptophan metabolites are not susceptible to an AHR negative feedback loop and are likely important factors that mediate constitutive but low level systemic human AHR activity. SAGE Publications 2023-07-07 /pmc/articles/PMC10331327/ /pubmed/37434789 http://dx.doi.org/10.1177/11786469231182508 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Article Dong, Fangcong Annalora, Andrew J Murray, Iain A Tian, Yuan Marcus, Craig B Patterson, Andrew D Perdew, Gary H Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback |
title | Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback |
title_full | Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback |
title_fullStr | Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback |
title_full_unstemmed | Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback |
title_short | Endogenous Tryptophan-Derived Ah Receptor Ligands are Dissociated from CYP1A1/1B1-Dependent Negative-Feedback |
title_sort | endogenous tryptophan-derived ah receptor ligands are dissociated from cyp1a1/1b1-dependent negative-feedback |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331327/ https://www.ncbi.nlm.nih.gov/pubmed/37434789 http://dx.doi.org/10.1177/11786469231182508 |
work_keys_str_mv | AT dongfangcong endogenoustryptophanderivedahreceptorligandsaredissociatedfromcyp1a11b1dependentnegativefeedback AT annaloraandrewj endogenoustryptophanderivedahreceptorligandsaredissociatedfromcyp1a11b1dependentnegativefeedback AT murrayiaina endogenoustryptophanderivedahreceptorligandsaredissociatedfromcyp1a11b1dependentnegativefeedback AT tianyuan endogenoustryptophanderivedahreceptorligandsaredissociatedfromcyp1a11b1dependentnegativefeedback AT marcuscraigb endogenoustryptophanderivedahreceptorligandsaredissociatedfromcyp1a11b1dependentnegativefeedback AT pattersonandrewd endogenoustryptophanderivedahreceptorligandsaredissociatedfromcyp1a11b1dependentnegativefeedback AT perdewgaryh endogenoustryptophanderivedahreceptorligandsaredissociatedfromcyp1a11b1dependentnegativefeedback |