Cargando…
Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning
Deep reinforcement learning (RL) agents often suffer from catastrophic forgetting, forgetting previously found solutions in parts of the input space when training new data. Replay memories are a common solution to the problem by decorrelating and shuffling old and new training samples. They naively...
Autores principales: | Hafez, Muhammad Burhan, Immisch, Tilman, Weber, Tom, Wermter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333526/ https://www.ncbi.nlm.nih.gov/pubmed/37440981 http://dx.doi.org/10.3389/fnbot.2023.1127642 |
Ejemplares similares
-
Sleep-like unsupervised replay reduces catastrophic forgetting in artificial neural networks
por: Tadros, Timothy, et al.
Publicado: (2022) -
Can sleep protect memories from catastrophic forgetting?
por: González, Oscar C, et al.
Publicado: (2020) -
Dynamic memory to alleviate catastrophic forgetting in continual learning with medical imaging
por: Perkonigg, Matthias, et al.
Publicado: (2021) -
Replays of spatial memories suppress topological fluctuations in cognitive map
por: Babichev, Andrey, et al.
Publicado: (2019) -
Memory-Replay Knowledge Distillation
por: Wang, Jiyue, et al.
Publicado: (2021)