Cargando…
Multi-batch single-cell comparative atlas construction by deep learning disentanglement
Cell state atlases constructed through single-cell RNA-seq and ATAC-seq analysis are powerful tools for analyzing the effects of genetic and drug treatment-induced perturbations on complex cell systems. Comparative analysis of such atlases can yield new insights into cell state and trajectory altera...
Autores principales: | Lynch, Allen W., Brown, Myles, Meyer, Clifford A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336139/ https://www.ncbi.nlm.nih.gov/pubmed/37433791 http://dx.doi.org/10.1038/s41467-023-39494-2 |
Ejemplares similares
-
scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data
por: Zhang, Ziqi, et al.
Publicado: (2023) -
Batch alignment of single-cell transcriptomics data using deep metric learning
por: Yu, Xiaokang, et al.
Publicado: (2023) -
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
por: Higgins, Irina, et al.
Publicado: (2021) -
Integration of single cell data by disentangled representation learning
por: Guo, Tiantian, et al.
Publicado: (2021) -
Nonlinear independent component analysis for principled disentanglement in unsupervised deep learning
por: Hyvärinen, Aapo, et al.
Publicado: (2023)