Cargando…

(CAAC)Pd(py) Catalysts Disproportionate to Pd(CAAC)(2)

[Image: see text] Palladium complexes with one N-heterocyclic carbene (NHC) and a pyridine ancillary ligand are powerful cross-coupling precatalysts. Herein, we report such complexes with a cyclic (alkyl)(amino)carbene (CAAC) ligand replacing the NHC. We find that the alleged reduced form, (CAAC)Pd(...

Descripción completa

Detalles Bibliográficos
Autores principales: Marigo, Nicola, Morgenstern, Bernd, Biffis, Andrea, Munz, Dominik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337258/
https://www.ncbi.nlm.nih.gov/pubmed/37448536
http://dx.doi.org/10.1021/acs.organomet.3c00150
Descripción
Sumario:[Image: see text] Palladium complexes with one N-heterocyclic carbene (NHC) and a pyridine ancillary ligand are powerful cross-coupling precatalysts. Herein, we report such complexes with a cyclic (alkyl)(amino)carbene (CAAC) ligand replacing the NHC. We find that the alleged reduced form, (CAAC)Pd(py), disproportionates to the (CAAC)(2)Pd(0) complex and palladium nanoparticles. This notwithstanding, they are potent catalysts in the Buchwald–Hartwig amination with aryl chlorides under mild conditions (60 °C). In the presence of dioxygen, these complexes catalyze the formation of diazenes from anilines. The catalytic activities of the NHC- and CAAC-supported palladium(0) and palladium(II) complexes are similar in the cross-coupling reaction, yet the CAAC complexes are superior for diazene formation.