Cargando…

SHARPIN Enhances Ferroptosis in Synovial Sarcoma Cells via NF-κB- and PRMT5-Mediated PGC1α Reduction

SIMPLE SUMMARY: Sarcoma is difficult to treat because of its rarity. Ferroptosis is a new type of cell death mediated by ferrous iron. In the present study, we aimed to clarify the effect of ferroptosis in sarcoma. As compared with noncancer and carcinoma cell lines, ferroptosis is more sensitive in...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamiya, Hironari, Urushihara, Naoko, Shizuma, Kazuko, Ogawa, Hisataka, Nakai, Sho, Wakamatsu, Toru, Takenaka, Satoshi, Kakunaga, Shigeki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341212/
https://www.ncbi.nlm.nih.gov/pubmed/37444594
http://dx.doi.org/10.3390/cancers15133484
Descripción
Sumario:SIMPLE SUMMARY: Sarcoma is difficult to treat because of its rarity. Ferroptosis is a new type of cell death mediated by ferrous iron. In the present study, we aimed to clarify the effect of ferroptosis in sarcoma. As compared with noncancer and carcinoma cell lines, ferroptosis is more sensitive in most of the sarcoma cell lines. Moreover, transferrin receptor 1 (TFRC) and SHANK-associated RH domain interactor (SHARPIN), both of which are oncogenic factors and related to poor overall survival, are highly expressed, particularly in synovial sarcoma cell lines. Furthermore, we discovered that SHARPIN is a positive regulator of ferroptosis through nuclear factor-kappa B (NF-κΒ) and protein arginine methyltransferase 5 (PRMT5)-mediated PGC1α reduction. In summary, we suggest that ferroptosis could be a therapeutic target in sarcoma, particularly in subpopulations with high TFRC and SHARPIN expression. ABSTRACT: Sarcoma is a rare type of cancer for which new therapeutic agents are required. Ferroptosis is a nonapoptotic cell death triggered by iron-mediated lipid peroxidation. We found that TFRC, an iron uptake protein, was expressed at higher levels in sarcoma cell lines than in noncancer and carcinoma cell lines. Glutathione peroxidase 4 (GPX4) protects cells against ferroptosis, and its inhibition using RAS-selective lethal 3 (RSL3) had an antitumor effect that was more pronounced in sarcoma cell lines, particularly synovial sarcoma cells, compared to non-sarcoma cells. Because NF-κB can provoke ferroptosis, we examined the role of SHARPIN, an activator of NF-κB, in sarcoma. We found that SHARPIN expression was significantly associated with reduced survival in cohorts of patients with cancer, including sarcoma. In addition, SHARPIN promoted the sensitivity of sarcoma cells to ferroptosis. Further analyses revealed that the PGC1α/NRF2/SLC7A11 axis and BNIP3L/NIX-mediated mitophagy are regulated through NF-κB and PRMT5 downstream of SHARPIN. Our findings suggest that ferroptosis could have a therapeutic effect in sarcoma, particularly in subpopulations with high TFRC and SHARPIN expression.