Cargando…
Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks
Generation of stable gene-edited plant lines using clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) requires a lengthy process of outcrossing to eliminate CRISPR–Cas9-associated sequences and produce transgene-free lines. We have addressed this is...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344777/ https://www.ncbi.nlm.nih.gov/pubmed/36593415 http://dx.doi.org/10.1038/s41587-022-01585-8 |
Sumario: | Generation of stable gene-edited plant lines using clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) requires a lengthy process of outcrossing to eliminate CRISPR–Cas9-associated sequences and produce transgene-free lines. We have addressed this issue by designing fusions of Cas9 and guide RNA transcripts to tRNA-like sequence motifs that move RNAs from transgenic rootstocks to grafted wild-type shoots (scions) and achieve heritable gene editing, as demonstrated in wild-type Arabidopsis thaliana and Brassica rapa. The graft-mobile gene editing system enables the production of transgene-free offspring in one generation without the need for transgene elimination, culture recovery and selection, or use of viral editing vectors. We anticipate that using graft-mobile editing systems for transgene-free plant production may be applied to a wide range of breeding programs and crop plants. |
---|