Cargando…

The Control Method of Autonomous Flight Avoidance Barriers of UAVs in Confined Environments

This paper proposes an improved 3D-Vector Field Histogram (3D-VFH) algorithm for autonomous flight and local obstacle avoidance of multi-rotor unmanned aerial vehicles (UAVs) in a confined environment. Firstly, the method employs a target point coordinate system based on polar coordinates to convert...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Tiantian, Zhang, Yonghong, Xiao, Qianyu, Huang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346953/
https://www.ncbi.nlm.nih.gov/pubmed/37447745
http://dx.doi.org/10.3390/s23135896
Descripción
Sumario:This paper proposes an improved 3D-Vector Field Histogram (3D-VFH) algorithm for autonomous flight and local obstacle avoidance of multi-rotor unmanned aerial vehicles (UAVs) in a confined environment. Firstly, the method employs a target point coordinate system based on polar coordinates to convert the point cloud data, considering that long-range point cloud information has no effect on local obstacle avoidance by UAVs. This enables UAVs to effectively utilize obstacle information for obstacle avoidance and improves the real-time performance of the algorithm. Secondly, a sliding window algorithm is used to estimate the optimal flight path of the UAV and implement obstacle avoidance control, thereby maintaining the attitude stability of the UAV during obstacle avoidance flight. Finally, experimental analysis is conducted, and the results show that the UAV has good attitude stability during obstacle avoidance flight, can autonomously follow the expected trajectory, and can avoid dynamic obstacles, achieving precise obstacle avoidance.