Cargando…
Model development and validation of noninvasive parameters based on coronary computed tomography angiography to predict culprit lesions in acute coronary syndromes within 3 years: value of plaque characteristics, hemodynamics and pericoronary adipose tissue
BACKGROUND: Machine learning (ML) is combined with noninvasive parameters from coronary computed tomography angiography (CTA) to construct predictive models to identify culprit lesions that may lead to acute coronary syndrome (ACS). METHODS: We retrospectively analyzed 132 patients with ACS at the F...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347311/ https://www.ncbi.nlm.nih.gov/pubmed/37456302 http://dx.doi.org/10.21037/qims-22-1045 |