Cargando…
PARP2 downregulation in T cells ameliorates lipopolysaccharide-induced inflammation of the large intestine
INTRODUCTION: T cell-dependent inflammatory response with the upregulation of helper 17 T cells (Th17) and the downregulation of regulatory T cells (Treg) accompanied by the increased production of tumor necrosis alpha (TNFa) is characteristic of inflammatory bowel diseases (IBD). Modulation of T ce...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347374/ https://www.ncbi.nlm.nih.gov/pubmed/37457706 http://dx.doi.org/10.3389/fimmu.2023.1135410 |
Sumario: | INTRODUCTION: T cell-dependent inflammatory response with the upregulation of helper 17 T cells (Th17) and the downregulation of regulatory T cells (Treg) accompanied by the increased production of tumor necrosis alpha (TNFa) is characteristic of inflammatory bowel diseases (IBD). Modulation of T cell response may alleviate the inflammation thus reduce intestinal damage. Poly(ADP-ribose) polymerase-2 (PARP2) plays role in the development, differentiation and reactivity of T cell subpopulations. Our aim was to investigate the potential beneficial effect of T cell-specific PARP2 downregulation in the lipopolysaccharide (LPS) induced inflammatory response of the cecum and the colon. METHODS: Low-dose LPS was injected intraperitoneally to induce local inflammatory response, characterized by increased TNFa production, in control (CD4Cre; PARP2+/+) and T cell-specific conditional PARP2 knockout (CD4Cre; PARP2f/f) mice. TNFa, IL-1b, IL-17 levels were measured by ELISA, oxidative–nitrative stress was estimated by immunohistochemistry, while PARP1 activity, p38 MAPK and ERK phosphorylation, and NF-kB expression in large intestine tissue samples were examined by Western-blot. Systemic & local T cell subpopulation; Th17 and Treg alterations were also investigated using flowcytometry and immunohistochemistry. RESULTS: In control animals, LPS induced intestinal inflammation with increased TNFa production, while no significant elevation of TNFa production was observed in T cell-specific PARP2 knockout animals. The absence of LPS-induced elevation in TNFa levels was accompanied by the absence of IL-1b elevation and the suppression of IL-17 production, showing markedly reduced inflammatory response. The increase in oxidative-nitrative stress and PARP1-activation was also absent in these tissues together with altered ERK and NF-kB activation. An increase in the number of the anti-inflammatory Treg cells in the intestinal mucosa was observed in these animals, together with the reduction of Treg count in the peripheral circulation. DISCUSSION: Our results confirmed that T cell-specific PARP2 downregulation ameliorated LPS-induced colitis. The dampened TNFa production, decreased IL-17 production and the increased intestinal regulatory T cell number after LPS treatment may be also beneficial during inflammatory processes seen in IBD. By reducing oxidative-nitrative stress and PARP1 activation, T cell-specific PARP2 downregulation may also alleviate intestinal tissue damage. |
---|