Cargando…
A Multiphase Semistatic Training Method for Swarm Confrontation Using Multiagent Deep Reinforcement Learning
In this paper, we propose a multiphase semistatic training method for swarm confrontation using multi-agent deep reinforcement learning. In particular, we build a swarm confrontation game, the 3V3 tank fight, based on the Unity platform and train the agents by a MDRL algorithm called MA-POCA, coming...
Autores principales: | Cai, He, Luo, Yaoguo, Gao, Huanli, Chi, Jiale, Wang, Shuozhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348848/ https://www.ncbi.nlm.nih.gov/pubmed/37455769 http://dx.doi.org/10.1155/2023/2955442 |
Ejemplares similares
-
Multiagent cooperation and competition with deep reinforcement learning
por: Tampuu, Ardi, et al.
Publicado: (2017) -
Application of Reinforcement Learning in Multiagent Intelligent Decision-Making
por: Han, Xiaoyu
Publicado: (2022) -
Learning Attentional Communication with a Common Network for Multiagent Reinforcement Learning
por: Yu, Wenwu, et al.
Publicado: (2023) -
The AI Economist: Taxation policy design via two-level deep multiagent reinforcement learning
por: Zheng, Stephan, et al.
Publicado: (2022) -
A Bio-Inspired Decision-Making Method of UAV Swarm for Attack-Defense Confrontation via Multi-Agent Reinforcement Learning
por: Chi, Pei, et al.
Publicado: (2023)