Cargando…
Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality
BACKGROUND. Sleep is essential to life. Accurate measurement and classification of sleep/wake and sleep stages is important in clinical studies for sleep disorder diagnoses and in the interpretation of data from consumer devices for monitoring physical and mental well-being. Existing non-polysomnogr...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350137/ https://www.ncbi.nlm.nih.gov/pubmed/37461532 http://dx.doi.org/10.1101/2023.07.07.23292251 |