Cargando…
Current challenges in adopting machine learning to critical care and emergency medicine
Over the past decades, the field of machine learning (ML) has made great strides in medicine. Despite the number of ML-inspired publications in the clinical arena, the results and implications are not readily accepted at the bedside. Although ML is very powerful in deciphering hidden patterns in com...
Autores principales: | Kang, Cyra-Yoonsun, Yoon, Joo Heung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Emergency Medicine
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350350/ https://www.ncbi.nlm.nih.gov/pubmed/37188356 http://dx.doi.org/10.15441/ceem.23.041 |
Ejemplares similares
-
Artificial Intelligence in Critical Care Medicine
por: Yoon, Joo Heung, et al.
Publicado: (2022) -
An Unsuspected Case of Euglycemic Diabetic Ketoacidosis With Twists
por: Kang, Cyra-Yoonsun, et al.
Publicado: (2022) -
Machine Learning for Pulmonary and Critical Care Medicine: A Narrative Review
por: Mlodzinski, Eric, et al.
Publicado: (2020) -
The challenge of clinical adoption—the insurmountable obstacle that will stop machine learning?
por: Taylor, Jonathan, et al.
Publicado: (2018) -
Clinical Year in Review 2014: Critical Care Medicine
por: Lee, Jeong Moon, et al.
Publicado: (2014)