Cargando…
Identification of cell subpopulations associated with disease phenotypes from scRNA-seq data using PACSI
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) has revolutionized the transcriptomics field by advancing analyses from tissue-level to cell-level resolution. Despite the great advances in the development of computational methods for various steps of scRNA-seq analyses, one major bottleneck of th...
Autores principales: | Liu, Chonghui, Zhang, Yan, Gao, Xin, Wang, Guohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354926/ https://www.ncbi.nlm.nih.gov/pubmed/37468850 http://dx.doi.org/10.1186/s12915-023-01658-3 |
Ejemplares similares
-
Identification of spatially associated subpopulations by combining scRNA-seq and sequential fluorescence in situ hybridization data
por: Zhu, Qian, et al.
Publicado: (2018) -
Using DenseFly algorithm for cell searching on massive scRNA-seq datasets
por: Chen, Yixin, et al.
Publicado: (2020) -
An efficient scRNA-seq dropout imputation method using graph attention network
por: Xu, Chenyang, et al.
Publicado: (2021) -
A rank-based marker selection method for high throughput scRNA-seq data
por: Vargo, Alexander H. S., et al.
Publicado: (2020) -
SCReadCounts: estimation of cell-level SNVs expression from scRNA-seq data
por: Prashant, N. M., et al.
Publicado: (2021)