Cargando…
PINNED: identifying characteristics of druggable human proteins using an interpretable neural network
The identification of human proteins that are amenable to pharmacologic modulation without significant off-target effects remains an important unsolved challenge. Computational methods have been devised to identify features which distinguish between “druggable” and “undruggable” proteins, finding th...
Autores principales: | Cunningham, Michael, Pins, Danielle, Dezső, Zoltán, Torrent, Maricel, Vasanthakumar, Aparna, Pandey, Abhishek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354961/ https://www.ncbi.nlm.nih.gov/pubmed/37468968 http://dx.doi.org/10.1186/s13321-023-00735-7 |
Ejemplares similares
-
Graph Attention Site Prediction (GrASP): Identifying Druggable Binding Sites Using Graph Neural Networks with Attention
por: Smith, Zachary, et al.
Publicado: (2023) -
A new interpretation of the pi.N sigma term
por: Ericson, Torleif Eric Oskar
Publicado: (1987) -
A physical interpretation of the piN sigma-term
por: Ericson, Torleif Eric Oskar
Publicado: (1988) -
Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
Distinctive Behaviors of Druggable Proteins in Cellular Networks
por: Mitsopoulos, Costas, et al.
Publicado: (2015)