Cargando…
MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores
MOTIVATION: Combination therapies have emerged as a treatment strategy for cancers to reduce the probability of drug resistance and to improve outcomes. Large databases curating the results of many drug screening studies on preclinical cancer cell lines have been developed, capturing the synergistic...
Autores principales: | El Khili, Mohamed Reda, Memon, Safyan Aman, Emad, Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359108/ https://www.ncbi.nlm.nih.gov/pubmed/37021933 http://dx.doi.org/10.1093/bioinformatics/btad177 |
Ejemplares similares
-
MARSI: metabolite analogues for rational strain improvement
por: Cardoso, João G R, et al.
Publicado: (2018) -
A Multitask Deep Learning Framework for DNER
por: Jin, Ran, et al.
Publicado: (2022) -
Using MARSIS signal attenuation to assess the presence of South Polar Layered Deposit subglacial brines
por: Lauro, Sebastian E., et al.
Publicado: (2022) -
Deep Personal Multitask Prediction of Diabetes Complication with Attentive Interactions Predicting Diabetes Complications by Multitask-Learning
por: Zuo, Ming, et al.
Publicado: (2022) -
Retracted: Deep Personal Multitask Prediction of Diabetes Complication with Attentive Interactions Predicting Diabetes Complications by Multitask-Learning
por: Healthcare Engineering, Journal of
Publicado: (2023)