Cargando…
Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors
Bacteriophages operate via pathogen-specific mechanisms of action distinct from conventional, broad-spectrum antibiotics and are emerging as promising alternative antimicrobials. However, phage-mediated killing is often limited by bacterial resistance development. Here, we engineer phages for target...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359290/ https://www.ncbi.nlm.nih.gov/pubmed/37474516 http://dx.doi.org/10.1038/s41467-023-39612-0 |
Sumario: | Bacteriophages operate via pathogen-specific mechanisms of action distinct from conventional, broad-spectrum antibiotics and are emerging as promising alternative antimicrobials. However, phage-mediated killing is often limited by bacterial resistance development. Here, we engineer phages for target-specific effector gene delivery and host-dependent production of colicin-like bacteriocins and cell wall hydrolases. Using urinary tract infection (UTI) as a model, we show how heterologous effector phage therapeutics (HEPTs) suppress resistance and improve uropathogen killing by dual phage- and effector-mediated targeting. Moreover, we designed HEPTs to control polymicrobial uropathogen communities through production of effectors with cross-genus activity. Using phage-based companion diagnostics, we identified potential HEPT responder patients and treated their urine ex vivo. Compared to wildtype phage, a colicin E7-producing HEPT demonstrated superior control of patient E. coli bacteriuria. Arming phages with heterologous effectors paves the way for successful UTI treatment and represents a versatile tool to enhance and adapt phage-based precision antimicrobials. |
---|