Cargando…
High fidelity DNA strand-separation is the major specificity determinant in DNA methyltransferase CcrM’s catalytic mechanism
Strand-separation is emerging as a novel DNA recognition mechanism but the underlying mechanisms and quantitative contribution of strand-separation to fidelity remain obscure. The bacterial DNA adenine methyltransferase, CcrM, recognizes 5′GANTC′3 sequences through a DNA strand-separation mechanism...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359602/ https://www.ncbi.nlm.nih.gov/pubmed/37326016 http://dx.doi.org/10.1093/nar/gkad443 |
Sumario: | Strand-separation is emerging as a novel DNA recognition mechanism but the underlying mechanisms and quantitative contribution of strand-separation to fidelity remain obscure. The bacterial DNA adenine methyltransferase, CcrM, recognizes 5′GANTC′3 sequences through a DNA strand-separation mechanism with unusually high selectivity. To explore this novel recognition mechanism, we incorporated Pyrrolo-dC into cognate and noncognate DNA to monitor the kinetics of strand-separation and used tryptophan fluorescence to follow protein conformational changes. Both signals are biphasic and global fitting showed that the faster phase of DNA strand-separation was coincident with the protein conformational transition. Non-cognate sequences did not display strand-separation and methylation was reduced > 300-fold, providing evidence that strand-separation is a major determinant of selectivity. Analysis of an R350A mutant showed that the enzyme conformational step can occur without strand-separation, so the two events are uncoupled. A stabilizing role for the methyl-donor (SAM) is proposed; the cofactor interacts with a critical loop which is inserted between the DNA strands, thereby stabilizing the strand-separated conformation. The results presented here are broadly applicable to the study of other N(6)-adenine methyltransferases that contain the structural features implicated in strand-separation, which are found widely dispersed across many bacterial phyla, including human and animal pathogens, and some Eukaryotes. |
---|