Cargando…
Refinement of AlphaFold2 models against experimental and hybrid cryo-EM density maps
Recent breakthroughs in deep learning-based protein structure prediction show that it is possible to obtain highly accurate models for a wide range of difficult protein targets for which only the amino acid sequence is known. The availability of accurately predicted models from sequences can potenti...
Autores principales: | Alshammari, Maytha, Wriggers, Willy, Sun, Jiangwen, He, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361706/ https://www.ncbi.nlm.nih.gov/pubmed/37485023 http://dx.doi.org/10.1017/qrd.2022.13 |
Ejemplares similares
-
Protein model refinement for cryo-EM maps using AlphaFold2 and the DAQ score
por: Terashi, Genki, et al.
Publicado: (2023) -
AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps
por: Hryc, Corey F., et al.
Publicado: (2022) -
A Tool for Segmentation of Secondary Structures in 3D Cryo-EM Density Map Components Using Deep Convolutional Neural Networks
por: Mu, Yongcheng, et al.
Publicado: (2021) -
Combining Cryo-EM Density Map and Residue Contact for Protein Secondary Structure Topologies
por: Alshammari, Maytha, et al.
Publicado: (2021) -
Accurate flexible refinement of atomic models against medium-resolution cryo-EM maps using damped dynamics
por: Kovacs, Julio A., et al.
Publicado: (2018)