Cargando…
Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase
Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362175/ https://www.ncbi.nlm.nih.gov/pubmed/37437449 http://dx.doi.org/10.1016/j.redox.2023.102807 |
_version_ | 1785076366112194560 |
---|---|
author | Philipp, Thilo Magnus Gernoth, Leon Will, Andreas Schwarz, Maria Ohse, Verena Alexia Kipp, Anna Patricia Steinbrenner, Holger Klotz, Lars-Oliver |
author_facet | Philipp, Thilo Magnus Gernoth, Leon Will, Andreas Schwarz, Maria Ohse, Verena Alexia Kipp, Anna Patricia Steinbrenner, Holger Klotz, Lars-Oliver |
author_sort | Philipp, Thilo Magnus |
collection | PubMed |
description | Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of putative copper-binding sites in human SELENBP1 produced as recombinant protein in E. coli resulted in loss of its enzymatic function. On the other hand, the eponymous binding of selenium (as selenite) was no requirement for MTO activity and only moderately increased SELENBP1-catalyzed oxidation of methanethiol. Furthermore, SEMO-1, the SELENBP1 ortholog recently identified in the nematode C. elegans, also requires copper ions, and MTO activity was enhanced or abrogated, respectively, if worms were grown in the presence of cupric chloride or of a Cu chelator. In addition to methanethiol, we identified novel substrates of SELENBP1 from the group of volatile sulfur compounds, ranging from ethanethiol to 1-pentanethiol as well as 2-propene-1-thiol. Gut microbiome-derived methanethiol as well as food-derived volatile sulfur compounds (VSCs) account for malodors that may contribute to extraoral halitosis in humans, if not metabolized properly. As SELENBP1 is particularly abundant in tissues exposed to VSCs, such as colon, liver, and lung, it appears to contribute to copper-dependent VSC degradation. |
format | Online Article Text |
id | pubmed-10362175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103621752023-07-23 Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase Philipp, Thilo Magnus Gernoth, Leon Will, Andreas Schwarz, Maria Ohse, Verena Alexia Kipp, Anna Patricia Steinbrenner, Holger Klotz, Lars-Oliver Redox Biol Articles from the Special Issue on Nutrigenomics; Edited by Dr. Lars-Oliver Klotz and Dr. Carsten Carlberg Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of putative copper-binding sites in human SELENBP1 produced as recombinant protein in E. coli resulted in loss of its enzymatic function. On the other hand, the eponymous binding of selenium (as selenite) was no requirement for MTO activity and only moderately increased SELENBP1-catalyzed oxidation of methanethiol. Furthermore, SEMO-1, the SELENBP1 ortholog recently identified in the nematode C. elegans, also requires copper ions, and MTO activity was enhanced or abrogated, respectively, if worms were grown in the presence of cupric chloride or of a Cu chelator. In addition to methanethiol, we identified novel substrates of SELENBP1 from the group of volatile sulfur compounds, ranging from ethanethiol to 1-pentanethiol as well as 2-propene-1-thiol. Gut microbiome-derived methanethiol as well as food-derived volatile sulfur compounds (VSCs) account for malodors that may contribute to extraoral halitosis in humans, if not metabolized properly. As SELENBP1 is particularly abundant in tissues exposed to VSCs, such as colon, liver, and lung, it appears to contribute to copper-dependent VSC degradation. Elsevier 2023-07-04 /pmc/articles/PMC10362175/ /pubmed/37437449 http://dx.doi.org/10.1016/j.redox.2023.102807 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles from the Special Issue on Nutrigenomics; Edited by Dr. Lars-Oliver Klotz and Dr. Carsten Carlberg Philipp, Thilo Magnus Gernoth, Leon Will, Andreas Schwarz, Maria Ohse, Verena Alexia Kipp, Anna Patricia Steinbrenner, Holger Klotz, Lars-Oliver Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase |
title | Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase |
title_full | Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase |
title_fullStr | Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase |
title_full_unstemmed | Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase |
title_short | Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase |
title_sort | selenium-binding protein 1 (selenbp1) is a copper-dependent thiol oxidase |
topic | Articles from the Special Issue on Nutrigenomics; Edited by Dr. Lars-Oliver Klotz and Dr. Carsten Carlberg |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362175/ https://www.ncbi.nlm.nih.gov/pubmed/37437449 http://dx.doi.org/10.1016/j.redox.2023.102807 |
work_keys_str_mv | AT philippthilomagnus seleniumbindingprotein1selenbp1isacopperdependentthioloxidase AT gernothleon seleniumbindingprotein1selenbp1isacopperdependentthioloxidase AT willandreas seleniumbindingprotein1selenbp1isacopperdependentthioloxidase AT schwarzmaria seleniumbindingprotein1selenbp1isacopperdependentthioloxidase AT ohseverenaalexia seleniumbindingprotein1selenbp1isacopperdependentthioloxidase AT kippannapatricia seleniumbindingprotein1selenbp1isacopperdependentthioloxidase AT steinbrennerholger seleniumbindingprotein1selenbp1isacopperdependentthioloxidase AT klotzlarsoliver seleniumbindingprotein1selenbp1isacopperdependentthioloxidase |