Cargando…
Searching for protein variants with desired properties using deep generative models
BACKGROUND: Protein engineering aims to improve the functional properties of existing proteins to meet people’s needs. Current deep learning-based models have captured evolutionary, functional, and biochemical features contained in amino acid sequences. However, the existing generative models need t...
Autores principales: | Li, Yan, Yao, Yinying, Xia, Yu, Tang, Mingjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362698/ https://www.ncbi.nlm.nih.gov/pubmed/37480001 http://dx.doi.org/10.1186/s12859-023-05415-9 |
Ejemplares similares
-
Design and Synthesis of DDR1 Inhibitors with a Desired Pharmacophore Using Deep Generative Models
por: Yoshimori, Atsushi, et al.
Publicado: (2021) -
CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties
por: Li, Jia-Ning, et al.
Publicado: (2023) -
Deep generative models of LDLR protein structure to predict variant pathogenicity
por: James, Jose K., et al.
Publicado: (2023) -
Desired Alteration of Protein Affinities: Competitive Selection of Protein Variants Using Yeast Signal Transduction Machinery
por: Kaishima, Misato, et al.
Publicado: (2014) -
Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties
por: Miskovic, Ljubisa, et al.
Publicado: (2019)