Cargando…
A machine learning approach to model the impact of line edge roughness on gate-all-around nanowire FETs while reducing the carbon footprint
The performance and reliability of semiconductor devices scaled down to the sub-nanometer regime are being seriously affected by process-induced variability. To properly assess the impact of the different sources of fluctuations, such as line edge roughness (LER), statistical analyses involving larg...
Autores principales: | García-Loureiro, Antonio, Seoane, Natalia, Fernández, Julián G., Comesaña, Enrique, Pichel, Juan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365313/ https://www.ncbi.nlm.nih.gov/pubmed/37486944 http://dx.doi.org/10.1371/journal.pone.0288964 |
Ejemplares similares
-
Special Issue: Nanowire Field-Effect Transistor (FET)
por: Seoane, Natalia, et al.
Publicado: (2020) -
Implementation of Gate-All-Around Gate-Engineered Charge Plasma Nanowire FET-Based Common Source Amplifier
por: Singh, Sarabdeep, et al.
Publicado: (2023) -
Vertical Gate-All-Around Nanowire GaSb-InAs Core-Shell n-Type Tunnel FETs
por: Vasen, T., et al.
Publicado: (2019) -
Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances
por: Barik, Rasmita, et al.
Publicado: (2023) -
A Multi-Method Simulation Toolbox to Study Performance and Variability of Nanowire FETs
por: Seoane, Natalia, et al.
Publicado: (2019)