Cargando…

Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function

Cancer-specific metabolic activities play a crucial role in the pathogenesis of human malignancies. To investigate human acute leukemia–specific metabolic properties, we comprehensively measured the cellular metabolites within the CD34(+) fraction of normal hematopoietic stem progenitor cells (HSPCs...

Descripción completa

Detalles Bibliográficos
Autores principales: Kikushige, Yoshikane, Miyamoto, Toshihiro, Kochi, Yu, Semba, Yuichiro, Ohishi, Maki, Irifune, Hidetoshi, Hatakeyama, Kiwamu, Kunisaki, Yuya, Sugio, Takeshi, Sakoda, Teppei, Miyawaki, Kohta, Kato, Koji, Soga, Tomoyoshi, Akashi, Koichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society of Hematology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368855/
https://www.ncbi.nlm.nih.gov/pubmed/36044390
http://dx.doi.org/10.1182/bloodadvances.2022008242
_version_ 1785077594514784256
author Kikushige, Yoshikane
Miyamoto, Toshihiro
Kochi, Yu
Semba, Yuichiro
Ohishi, Maki
Irifune, Hidetoshi
Hatakeyama, Kiwamu
Kunisaki, Yuya
Sugio, Takeshi
Sakoda, Teppei
Miyawaki, Kohta
Kato, Koji
Soga, Tomoyoshi
Akashi, Koichi
author_facet Kikushige, Yoshikane
Miyamoto, Toshihiro
Kochi, Yu
Semba, Yuichiro
Ohishi, Maki
Irifune, Hidetoshi
Hatakeyama, Kiwamu
Kunisaki, Yuya
Sugio, Takeshi
Sakoda, Teppei
Miyawaki, Kohta
Kato, Koji
Soga, Tomoyoshi
Akashi, Koichi
author_sort Kikushige, Yoshikane
collection PubMed
description Cancer-specific metabolic activities play a crucial role in the pathogenesis of human malignancies. To investigate human acute leukemia–specific metabolic properties, we comprehensively measured the cellular metabolites within the CD34(+) fraction of normal hematopoietic stem progenitor cells (HSPCs), primary human acute myelogenous leukemia (AML), and acute lymphoblastic leukemia (ALL) cells. Here, we show that human leukemia cells are addicted to the branched-chain amino acid (BCAA) metabolism to maintain their stemness, irrespective of myeloid or lymphoid types. Human primary acute leukemias had BCAA transporters for BCAA uptake, cellular BCAA, α-ketoglutarate (α-KG), and cytoplasmic BCAA transaminase-1 (BCAT1) at significantly higher levels than control HSPCs. Isotope-tracing experiments showed that in primary leukemia cells, BCAT1 actively catabolizes BCAA using α-KG into branched-chain α-ketoacids, whose metabolic processes provide leukemia cells with critical substrates for the trichloroacetic acid cycle and the synthesis of nonessential amino acids, both of which reproduce α-KG to maintain its cellular level. In xenogeneic transplantation experiments, deprivation of BCAA from daily diet strongly inhibited expansion, engraftment and self-renewal of human acute leukemia cells. Inhibition of BCAA catabolism in primary AML or ALL cells specifically inactivates the function of the polycomb repressive complex 2, an epigenetic regulator for stem cell signatures, by inhibiting the transcription of PRC components, such as zeste homolog 2 and embryonic ectoderm development. Accordingly, BCAA catabolism plays an important role in the maintenance of stemness in primary human AML and ALL, and molecules related to the BCAA metabolism pathway should be critical targets for acute leukemia treatment.
format Online
Article
Text
id pubmed-10368855
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The American Society of Hematology
record_format MEDLINE/PubMed
spelling pubmed-103688552023-07-27 Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function Kikushige, Yoshikane Miyamoto, Toshihiro Kochi, Yu Semba, Yuichiro Ohishi, Maki Irifune, Hidetoshi Hatakeyama, Kiwamu Kunisaki, Yuya Sugio, Takeshi Sakoda, Teppei Miyawaki, Kohta Kato, Koji Soga, Tomoyoshi Akashi, Koichi Blood Adv Myeloid Neoplasia Cancer-specific metabolic activities play a crucial role in the pathogenesis of human malignancies. To investigate human acute leukemia–specific metabolic properties, we comprehensively measured the cellular metabolites within the CD34(+) fraction of normal hematopoietic stem progenitor cells (HSPCs), primary human acute myelogenous leukemia (AML), and acute lymphoblastic leukemia (ALL) cells. Here, we show that human leukemia cells are addicted to the branched-chain amino acid (BCAA) metabolism to maintain their stemness, irrespective of myeloid or lymphoid types. Human primary acute leukemias had BCAA transporters for BCAA uptake, cellular BCAA, α-ketoglutarate (α-KG), and cytoplasmic BCAA transaminase-1 (BCAT1) at significantly higher levels than control HSPCs. Isotope-tracing experiments showed that in primary leukemia cells, BCAT1 actively catabolizes BCAA using α-KG into branched-chain α-ketoacids, whose metabolic processes provide leukemia cells with critical substrates for the trichloroacetic acid cycle and the synthesis of nonessential amino acids, both of which reproduce α-KG to maintain its cellular level. In xenogeneic transplantation experiments, deprivation of BCAA from daily diet strongly inhibited expansion, engraftment and self-renewal of human acute leukemia cells. Inhibition of BCAA catabolism in primary AML or ALL cells specifically inactivates the function of the polycomb repressive complex 2, an epigenetic regulator for stem cell signatures, by inhibiting the transcription of PRC components, such as zeste homolog 2 and embryonic ectoderm development. Accordingly, BCAA catabolism plays an important role in the maintenance of stemness in primary human AML and ALL, and molecules related to the BCAA metabolism pathway should be critical targets for acute leukemia treatment. The American Society of Hematology 2022-09-02 /pmc/articles/PMC10368855/ /pubmed/36044390 http://dx.doi.org/10.1182/bloodadvances.2022008242 Text en © 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Myeloid Neoplasia
Kikushige, Yoshikane
Miyamoto, Toshihiro
Kochi, Yu
Semba, Yuichiro
Ohishi, Maki
Irifune, Hidetoshi
Hatakeyama, Kiwamu
Kunisaki, Yuya
Sugio, Takeshi
Sakoda, Teppei
Miyawaki, Kohta
Kato, Koji
Soga, Tomoyoshi
Akashi, Koichi
Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function
title Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function
title_full Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function
title_fullStr Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function
title_full_unstemmed Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function
title_short Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function
title_sort human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating prc2 function
topic Myeloid Neoplasia
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368855/
https://www.ncbi.nlm.nih.gov/pubmed/36044390
http://dx.doi.org/10.1182/bloodadvances.2022008242
work_keys_str_mv AT kikushigeyoshikane humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT miyamototoshihiro humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT kochiyu humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT sembayuichiro humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT ohishimaki humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT irifunehidetoshi humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT hatakeyamakiwamu humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT kunisakiyuya humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT sugiotakeshi humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT sakodateppei humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT miyawakikohta humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT katokoji humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT sogatomoyoshi humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function
AT akashikoichi humanacuteleukemiausesbranchedchainaminoacidcatabolismtomaintainstemnessthroughregulatingprc2function