Cargando…
DeDoc2 Identifies and Characterizes the Hierarchy and Dynamics of Chromatin TAD‐Like Domains in the Single Cells
Topologically associating domains (TADs) are functional chromatin units with hierarchical structure. However, the existence, prevalence, and dynamics of such hierarchy in single cells remain unexplored. Here, a new generation TAD‐like domain (TLD) detection algorithm, named deDoc2, to decode the hie...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369259/ https://www.ncbi.nlm.nih.gov/pubmed/37162225 http://dx.doi.org/10.1002/advs.202300366 |
Sumario: | Topologically associating domains (TADs) are functional chromatin units with hierarchical structure. However, the existence, prevalence, and dynamics of such hierarchy in single cells remain unexplored. Here, a new generation TAD‐like domain (TLD) detection algorithm, named deDoc2, to decode the hierarchy of TLDs in single cells, is reported. With dynamic programming, deDoc2 seeks genome partitions with global minimal structure entropy for both whole and local contact matrix. Notably, deDoc2 outperforms state‐of‐the‐art tools and is one of only two tools able to identify the hierarchy of TLDs in single cells. By applying deDoc2, it is showed that the hierarchy of TLDs in single cells is highly dynamic during cell cycle, as well as among human brain cortex cells, and that it is associated with cellular identity and functions. Thus, the results demonstrate the abundance of information potentially encoded by TLD hierarchy for functional regulation. The deDoc2 can be freely accessed at https://github.com/zengguangjie/deDoc2. |
---|