Cargando…
Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake
Calcium (Ca(2+)) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca(2+) transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca(2+) uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins requir...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371168/ https://www.ncbi.nlm.nih.gov/pubmed/37502932 http://dx.doi.org/10.21203/rs.3.rs-3088175/v1 |
_version_ | 1785078097463214080 |
---|---|
author | Ponnusamy, Thiruvelselvan Velusamy, Prema Kumar, Amrendra Morris, Daniel Zhang, Xueqian Ning, Gang Klinger, Marianne Copper, Jean E. Rajan, Sudarsan Cheung, Joseph Y Natarajaseenivasan, Kalimuthusamy Mnatsakanyan, Nelli Shanmughapriya, Santhanam |
author_facet | Ponnusamy, Thiruvelselvan Velusamy, Prema Kumar, Amrendra Morris, Daniel Zhang, Xueqian Ning, Gang Klinger, Marianne Copper, Jean E. Rajan, Sudarsan Cheung, Joseph Y Natarajaseenivasan, Kalimuthusamy Mnatsakanyan, Nelli Shanmughapriya, Santhanam |
author_sort | Ponnusamy, Thiruvelselvan |
collection | PubMed |
description | Calcium (Ca(2+)) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca(2+) transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca(2+) uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg(2+)-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg(2+) channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg(2+)] is associated with increased MCU activity and matrix Ca(2+) overload. The disruption of Mg(2+)dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg(2+) in regulating MCU activity and attenuating mCa(2+) overload. |
format | Online Article Text |
id | pubmed-10371168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-103711682023-07-27 Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake Ponnusamy, Thiruvelselvan Velusamy, Prema Kumar, Amrendra Morris, Daniel Zhang, Xueqian Ning, Gang Klinger, Marianne Copper, Jean E. Rajan, Sudarsan Cheung, Joseph Y Natarajaseenivasan, Kalimuthusamy Mnatsakanyan, Nelli Shanmughapriya, Santhanam Res Sq Article Calcium (Ca(2+)) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca(2+) transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca(2+) uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg(2+)-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg(2+) channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg(2+)] is associated with increased MCU activity and matrix Ca(2+) overload. The disruption of Mg(2+)dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg(2+) in regulating MCU activity and attenuating mCa(2+) overload. American Journal Experts 2023-07-18 /pmc/articles/PMC10371168/ /pubmed/37502932 http://dx.doi.org/10.21203/rs.3.rs-3088175/v1 Text en https://creativecommons.org/licenses/by/4.0/License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License (https://creativecommons.org/licenses/by/4.0/) https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Ponnusamy, Thiruvelselvan Velusamy, Prema Kumar, Amrendra Morris, Daniel Zhang, Xueqian Ning, Gang Klinger, Marianne Copper, Jean E. Rajan, Sudarsan Cheung, Joseph Y Natarajaseenivasan, Kalimuthusamy Mnatsakanyan, Nelli Shanmughapriya, Santhanam Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake |
title | Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake |
title_full | Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake |
title_fullStr | Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake |
title_full_unstemmed | Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake |
title_short | Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake |
title_sort | mitochondrial magnesium is the cationic rheostat for mcu-mediated mitochondrial ca(2+) uptake |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371168/ https://www.ncbi.nlm.nih.gov/pubmed/37502932 http://dx.doi.org/10.21203/rs.3.rs-3088175/v1 |
work_keys_str_mv | AT ponnusamythiruvelselvan mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT velusamyprema mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT kumaramrendra mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT morrisdaniel mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT zhangxueqian mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT ninggang mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT klingermarianne mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT copperjeane mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT rajansudarsan mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT cheungjosephy mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT natarajaseenivasankalimuthusamy mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT mnatsakanyannelli mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake AT shanmughapriyasanthanam mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake |