Cargando…

Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake

Calcium (Ca(2+)) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca(2+) transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca(2+) uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins requir...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponnusamy, Thiruvelselvan, Velusamy, Prema, Kumar, Amrendra, Morris, Daniel, Zhang, Xueqian, Ning, Gang, Klinger, Marianne, Copper, Jean E., Rajan, Sudarsan, Cheung, Joseph Y, Natarajaseenivasan, Kalimuthusamy, Mnatsakanyan, Nelli, Shanmughapriya, Santhanam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371168/
https://www.ncbi.nlm.nih.gov/pubmed/37502932
http://dx.doi.org/10.21203/rs.3.rs-3088175/v1
_version_ 1785078097463214080
author Ponnusamy, Thiruvelselvan
Velusamy, Prema
Kumar, Amrendra
Morris, Daniel
Zhang, Xueqian
Ning, Gang
Klinger, Marianne
Copper, Jean E.
Rajan, Sudarsan
Cheung, Joseph Y
Natarajaseenivasan, Kalimuthusamy
Mnatsakanyan, Nelli
Shanmughapriya, Santhanam
author_facet Ponnusamy, Thiruvelselvan
Velusamy, Prema
Kumar, Amrendra
Morris, Daniel
Zhang, Xueqian
Ning, Gang
Klinger, Marianne
Copper, Jean E.
Rajan, Sudarsan
Cheung, Joseph Y
Natarajaseenivasan, Kalimuthusamy
Mnatsakanyan, Nelli
Shanmughapriya, Santhanam
author_sort Ponnusamy, Thiruvelselvan
collection PubMed
description Calcium (Ca(2+)) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca(2+) transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca(2+) uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg(2+)-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg(2+) channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg(2+)] is associated with increased MCU activity and matrix Ca(2+) overload. The disruption of Mg(2+)dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg(2+) in regulating MCU activity and attenuating mCa(2+) overload.
format Online
Article
Text
id pubmed-10371168
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-103711682023-07-27 Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake Ponnusamy, Thiruvelselvan Velusamy, Prema Kumar, Amrendra Morris, Daniel Zhang, Xueqian Ning, Gang Klinger, Marianne Copper, Jean E. Rajan, Sudarsan Cheung, Joseph Y Natarajaseenivasan, Kalimuthusamy Mnatsakanyan, Nelli Shanmughapriya, Santhanam Res Sq Article Calcium (Ca(2+)) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca(2+) transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca(2+) uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg(2+)-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg(2+) channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg(2+)] is associated with increased MCU activity and matrix Ca(2+) overload. The disruption of Mg(2+)dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg(2+) in regulating MCU activity and attenuating mCa(2+) overload. American Journal Experts 2023-07-18 /pmc/articles/PMC10371168/ /pubmed/37502932 http://dx.doi.org/10.21203/rs.3.rs-3088175/v1 Text en https://creativecommons.org/licenses/by/4.0/License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License (https://creativecommons.org/licenses/by/4.0/) https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Ponnusamy, Thiruvelselvan
Velusamy, Prema
Kumar, Amrendra
Morris, Daniel
Zhang, Xueqian
Ning, Gang
Klinger, Marianne
Copper, Jean E.
Rajan, Sudarsan
Cheung, Joseph Y
Natarajaseenivasan, Kalimuthusamy
Mnatsakanyan, Nelli
Shanmughapriya, Santhanam
Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake
title Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake
title_full Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake
title_fullStr Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake
title_full_unstemmed Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake
title_short Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca(2+) uptake
title_sort mitochondrial magnesium is the cationic rheostat for mcu-mediated mitochondrial ca(2+) uptake
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371168/
https://www.ncbi.nlm.nih.gov/pubmed/37502932
http://dx.doi.org/10.21203/rs.3.rs-3088175/v1
work_keys_str_mv AT ponnusamythiruvelselvan mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT velusamyprema mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT kumaramrendra mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT morrisdaniel mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT zhangxueqian mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT ninggang mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT klingermarianne mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT copperjeane mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT rajansudarsan mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT cheungjosephy mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT natarajaseenivasankalimuthusamy mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT mnatsakanyannelli mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake
AT shanmughapriyasanthanam mitochondrialmagnesiumisthecationicrheostatformcumediatedmitochondrialca2uptake