Cargando…
Towards advanced bioprocess optimization: A multiscale modelling approach
Mammalian cells produce up to 80 % of the commercially available therapeutic proteins, with Chinese Hamster Ovary (CHO) cells being the primary production host. Manufacturing involves a train of reactors, the last of which is typically run in fed-batch mode, where cells grow and produce the required...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371800/ https://www.ncbi.nlm.nih.gov/pubmed/37520284 http://dx.doi.org/10.1016/j.csbj.2023.07.003 |
Sumario: | Mammalian cells produce up to 80 % of the commercially available therapeutic proteins, with Chinese Hamster Ovary (CHO) cells being the primary production host. Manufacturing involves a train of reactors, the last of which is typically run in fed-batch mode, where cells grow and produce the required protein. The feeding strategy is decided a priori, from either past operations or the design of experiments and rarely considers the current state of the process. This work proposes a Model Predictive Control (MPC) formulation based on a hybrid kinetic-stoichiometric reactor model to provide optimal feeding policies in real-time, which is agnostic to the culture, hence transferable across CHO cell culture systems. The benefits of the proposed controller formulation are demonstrated through a comparison between an open-loop simulation and closed-loop optimization, using a digital twin as an emulator of the process. |
---|