Cargando…
DNA polymerase ε leading strand signature mutations result from defects in its proofreading activity
The evidence that purified pol2-M644G DNA polymerase (Pol)ε exhibits a highly elevated bias for forming T:dTTP mispairs over A:dATP mispairs and that yeast cells harboring this Polε mutation accumulate A > T signature mutations in the leading strand have been used to assign a role for Polε in rep...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371845/ https://www.ncbi.nlm.nih.gov/pubmed/37307920 http://dx.doi.org/10.1016/j.jbc.2023.104913 |
Sumario: | The evidence that purified pol2-M644G DNA polymerase (Pol)ε exhibits a highly elevated bias for forming T:dTTP mispairs over A:dATP mispairs and that yeast cells harboring this Polε mutation accumulate A > T signature mutations in the leading strand have been used to assign a role for Polε in replicating the leading strand. Here, we determine whether A > T signature mutations result from defects in Polε proofreading activity by analyzing their rate in Polε proofreading defective pol2-4 and pol2-M644G cells. Since purified pol2-4 Polε exhibits no bias for T:dTTP mispair formation, A > T mutations are expected to occur at a much lower rate in pol2-4 than in pol2-M644G cells if Polε replicated the leading strand. Instead, we find that the rate of A > T signature mutations are as highly elevated in pol2-4 cells as in pol2-M644G cells; furthermore, the highly elevated rate of A > T signature mutations is severely curtailed in the absence of PCNA ubiquitination or Polζ in both the pol2-M644G and pol2-4 strains. Altogether, our evidence supports the conclusion that the leading strand A > T signature mutations derive from defects in Polε proofreading activity and not from the role of Polε as a leading strand replicase, and it conforms with the genetic evidence for a major role of Polδ in replication of both the DNA strands. |
---|