Cargando…
An improved YOLO v4 used for grape detection in unstructured environment
Visual recognition is the most critical function of a harvesting robot, and the accuracy of the harvesting action is based on the performance of visual recognition. However, unstructured environment, such as severe occlusion, fruits overlap, illumination changes, complex backgrounds, and even heavy...
Autores principales: | Guo, Canzhi, Zheng, Shiwu, Cheng, Guanggui, Zhang, Yue, Ding, Jianning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374324/ https://www.ncbi.nlm.nih.gov/pubmed/37521937 http://dx.doi.org/10.3389/fpls.2023.1209910 |
Ejemplares similares
-
Unstructured road extraction and roadside fruit recognition in grape orchards based on a synchronous detection algorithm
por: Zhou, Xinzhao, et al.
Publicado: (2023) -
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network
por: Liu, Jun, et al.
Publicado: (2020) -
YOLO-P: An efficient method for pear fast detection in complex orchard picking environment
por: Sun, Han, et al.
Publicado: (2023) -
Tomato Anomalies Detection in Greenhouse Scenarios Based on YOLO-Dense
por: Wang, Xuewei, et al.
Publicado: (2021) -
Xoo-YOLO: a detection method for wild rice bacterial blight in the field from the perspective of unmanned aerial vehicles
por: Pan, Pan, et al.
Publicado: (2023)