Cargando…

Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit

This work aimed to establish the content of phenolic compounds, carbohydrates, and organic acids and to determine their potential to inactivate α-amylase, α-glucosidase, pancreatic lipase, 15-lipoxygenase (15-LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE), and antioxidant activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Rybak, Martyna, Wojdyło, Aneta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376563/
https://www.ncbi.nlm.nih.gov/pubmed/37507919
http://dx.doi.org/10.3390/antiox12071380
_version_ 1785079302142820352
author Rybak, Martyna
Wojdyło, Aneta
author_facet Rybak, Martyna
Wojdyło, Aneta
author_sort Rybak, Martyna
collection PubMed
description This work aimed to establish the content of phenolic compounds, carbohydrates, and organic acids and to determine their potential to inactivate α-amylase, α-glucosidase, pancreatic lipase, 15-lipoxygenase (15-LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE), and antioxidant activity (ABTS(o+) and FRAP) in 43 Prunus domestica cultivars. We identified 20 phenolic compounds, including, in the order of abundance, polymeric procyanidins, flavan-3-ols, phenolic acids, flavonols, and anthocyanins. The total content of phenolic compounds varied depending on the cultivar and ranged from 343.75 to 1419 mg/100 g d.w. The cultivars of Ś2, Ś11, and Ś16 accumulated the greatest amounts of polyphenols, while in cvs. Ś42, Ś35, and Ś20 polyphenols were the least abundant. The highest antioxidant potential of 7.71 (ABTS(o+)) and 13.28 (FRAP) mmoL Trolox/100 g d.w. was confirmed for cv. Ś11. P. domestica fruits showed inhibitory activity toward α-amylase (2.63–61.53), α-glucosidase (0.19–24.07), pancreatic lipase (0.50–8.20), and lipoxygenase (15-LOX; 4.19–32.67), expressed as IC(50) (mg/mL). The anti-AChE effect was stronger than the anti-BuChE one. Cv. Ś3 did not inhibit AChE activity, while cv. Ś35 did not inhibit BuChE. Thanks to the abundance of biologically active compounds, P. domestica offers several health-promoting benefits and may prevent many diseases. For these reasons, they are worth introducing into a daily diet.
format Online
Article
Text
id pubmed-10376563
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103765632023-07-29 Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit Rybak, Martyna Wojdyło, Aneta Antioxidants (Basel) Article This work aimed to establish the content of phenolic compounds, carbohydrates, and organic acids and to determine their potential to inactivate α-amylase, α-glucosidase, pancreatic lipase, 15-lipoxygenase (15-LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE), and antioxidant activity (ABTS(o+) and FRAP) in 43 Prunus domestica cultivars. We identified 20 phenolic compounds, including, in the order of abundance, polymeric procyanidins, flavan-3-ols, phenolic acids, flavonols, and anthocyanins. The total content of phenolic compounds varied depending on the cultivar and ranged from 343.75 to 1419 mg/100 g d.w. The cultivars of Ś2, Ś11, and Ś16 accumulated the greatest amounts of polyphenols, while in cvs. Ś42, Ś35, and Ś20 polyphenols were the least abundant. The highest antioxidant potential of 7.71 (ABTS(o+)) and 13.28 (FRAP) mmoL Trolox/100 g d.w. was confirmed for cv. Ś11. P. domestica fruits showed inhibitory activity toward α-amylase (2.63–61.53), α-glucosidase (0.19–24.07), pancreatic lipase (0.50–8.20), and lipoxygenase (15-LOX; 4.19–32.67), expressed as IC(50) (mg/mL). The anti-AChE effect was stronger than the anti-BuChE one. Cv. Ś3 did not inhibit AChE activity, while cv. Ś35 did not inhibit BuChE. Thanks to the abundance of biologically active compounds, P. domestica offers several health-promoting benefits and may prevent many diseases. For these reasons, they are worth introducing into a daily diet. MDPI 2023-07-03 /pmc/articles/PMC10376563/ /pubmed/37507919 http://dx.doi.org/10.3390/antiox12071380 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rybak, Martyna
Wojdyło, Aneta
Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit
title Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit
title_full Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit
title_fullStr Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit
title_full_unstemmed Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit
title_short Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit
title_sort inhibition of α-amylase, α-glucosidase, pancreatic lipase, 15-lipooxygenase and acetylcholinesterase modulated by polyphenolic compounds, organic acids, and carbohydrates of prunus domestica fruit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376563/
https://www.ncbi.nlm.nih.gov/pubmed/37507919
http://dx.doi.org/10.3390/antiox12071380
work_keys_str_mv AT rybakmartyna inhibitionofaamylaseaglucosidasepancreaticlipase15lipooxygenaseandacetylcholinesterasemodulatedbypolyphenoliccompoundsorganicacidsandcarbohydratesofprunusdomesticafruit
AT wojdyłoaneta inhibitionofaamylaseaglucosidasepancreaticlipase15lipooxygenaseandacetylcholinesterasemodulatedbypolyphenoliccompoundsorganicacidsandcarbohydratesofprunusdomesticafruit