Cargando…
Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit
This work aimed to establish the content of phenolic compounds, carbohydrates, and organic acids and to determine their potential to inactivate α-amylase, α-glucosidase, pancreatic lipase, 15-lipoxygenase (15-LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE), and antioxidant activ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376563/ https://www.ncbi.nlm.nih.gov/pubmed/37507919 http://dx.doi.org/10.3390/antiox12071380 |
_version_ | 1785079302142820352 |
---|---|
author | Rybak, Martyna Wojdyło, Aneta |
author_facet | Rybak, Martyna Wojdyło, Aneta |
author_sort | Rybak, Martyna |
collection | PubMed |
description | This work aimed to establish the content of phenolic compounds, carbohydrates, and organic acids and to determine their potential to inactivate α-amylase, α-glucosidase, pancreatic lipase, 15-lipoxygenase (15-LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE), and antioxidant activity (ABTS(o+) and FRAP) in 43 Prunus domestica cultivars. We identified 20 phenolic compounds, including, in the order of abundance, polymeric procyanidins, flavan-3-ols, phenolic acids, flavonols, and anthocyanins. The total content of phenolic compounds varied depending on the cultivar and ranged from 343.75 to 1419 mg/100 g d.w. The cultivars of Ś2, Ś11, and Ś16 accumulated the greatest amounts of polyphenols, while in cvs. Ś42, Ś35, and Ś20 polyphenols were the least abundant. The highest antioxidant potential of 7.71 (ABTS(o+)) and 13.28 (FRAP) mmoL Trolox/100 g d.w. was confirmed for cv. Ś11. P. domestica fruits showed inhibitory activity toward α-amylase (2.63–61.53), α-glucosidase (0.19–24.07), pancreatic lipase (0.50–8.20), and lipoxygenase (15-LOX; 4.19–32.67), expressed as IC(50) (mg/mL). The anti-AChE effect was stronger than the anti-BuChE one. Cv. Ś3 did not inhibit AChE activity, while cv. Ś35 did not inhibit BuChE. Thanks to the abundance of biologically active compounds, P. domestica offers several health-promoting benefits and may prevent many diseases. For these reasons, they are worth introducing into a daily diet. |
format | Online Article Text |
id | pubmed-10376563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103765632023-07-29 Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit Rybak, Martyna Wojdyło, Aneta Antioxidants (Basel) Article This work aimed to establish the content of phenolic compounds, carbohydrates, and organic acids and to determine their potential to inactivate α-amylase, α-glucosidase, pancreatic lipase, 15-lipoxygenase (15-LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE), and antioxidant activity (ABTS(o+) and FRAP) in 43 Prunus domestica cultivars. We identified 20 phenolic compounds, including, in the order of abundance, polymeric procyanidins, flavan-3-ols, phenolic acids, flavonols, and anthocyanins. The total content of phenolic compounds varied depending on the cultivar and ranged from 343.75 to 1419 mg/100 g d.w. The cultivars of Ś2, Ś11, and Ś16 accumulated the greatest amounts of polyphenols, while in cvs. Ś42, Ś35, and Ś20 polyphenols were the least abundant. The highest antioxidant potential of 7.71 (ABTS(o+)) and 13.28 (FRAP) mmoL Trolox/100 g d.w. was confirmed for cv. Ś11. P. domestica fruits showed inhibitory activity toward α-amylase (2.63–61.53), α-glucosidase (0.19–24.07), pancreatic lipase (0.50–8.20), and lipoxygenase (15-LOX; 4.19–32.67), expressed as IC(50) (mg/mL). The anti-AChE effect was stronger than the anti-BuChE one. Cv. Ś3 did not inhibit AChE activity, while cv. Ś35 did not inhibit BuChE. Thanks to the abundance of biologically active compounds, P. domestica offers several health-promoting benefits and may prevent many diseases. For these reasons, they are worth introducing into a daily diet. MDPI 2023-07-03 /pmc/articles/PMC10376563/ /pubmed/37507919 http://dx.doi.org/10.3390/antiox12071380 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rybak, Martyna Wojdyło, Aneta Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit |
title | Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit |
title_full | Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit |
title_fullStr | Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit |
title_full_unstemmed | Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit |
title_short | Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit |
title_sort | inhibition of α-amylase, α-glucosidase, pancreatic lipase, 15-lipooxygenase and acetylcholinesterase modulated by polyphenolic compounds, organic acids, and carbohydrates of prunus domestica fruit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376563/ https://www.ncbi.nlm.nih.gov/pubmed/37507919 http://dx.doi.org/10.3390/antiox12071380 |
work_keys_str_mv | AT rybakmartyna inhibitionofaamylaseaglucosidasepancreaticlipase15lipooxygenaseandacetylcholinesterasemodulatedbypolyphenoliccompoundsorganicacidsandcarbohydratesofprunusdomesticafruit AT wojdyłoaneta inhibitionofaamylaseaglucosidasepancreaticlipase15lipooxygenaseandacetylcholinesterasemodulatedbypolyphenoliccompoundsorganicacidsandcarbohydratesofprunusdomesticafruit |