Cargando…

Progressive Rehabilitation Based on EMG Gesture Classification and an MPC-Driven Exoskeleton

Stroke is a leading cause of disability and death worldwide, with a prevalence of 200 millions of cases worldwide. Motor disability is presented in 80% of patients. In this context, physical rehabilitation plays a fundamental role for gradually recovery of mobility. In this work, we designed a robot...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonilla, Daniel, Bravo, Manuela, Bonilla, Stephany P., Iragorri, Angela M., Mendez, Diego, Mondragon, Ivan F., Alvarado-Rojas, Catalina, Colorado, Julian D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376571/
https://www.ncbi.nlm.nih.gov/pubmed/37508798
http://dx.doi.org/10.3390/bioengineering10070770
Descripción
Sumario:Stroke is a leading cause of disability and death worldwide, with a prevalence of 200 millions of cases worldwide. Motor disability is presented in 80% of patients. In this context, physical rehabilitation plays a fundamental role for gradually recovery of mobility. In this work, we designed a robotic hand exoskeleton to support rehabilitation of patients after a stroke episode. The system acquires electromyographic (EMG) signals in the forearm, and automatically estimates the movement intention for five gestures. Subsequently, we developed a predictive adaptive control of the exoskeleton to compensate for three different levels of muscle fatigue during the rehabilitation therapy exercises. The proposed system could be used to assist the rehabilitation therapy of the patients by providing a repetitive, intense, and adaptive assistance.