Cargando…
Streptavidin-Conjugated DNA for the Boronate Affinity-Based Detection of Poly(ADP-Ribose) Polymerase-1 with Improved Sensitivity
This work reports the development of a fluorescence method for the detection of poly(ADP-ribose) polymerase-1 (PARP1), in which a phenylboronic acid-modified fluorescein isothiocyanate dye (FITC-PBA) was used to recognize the formed poly(ADP-ribose) (PAR) polymer. The detection system was designed b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377026/ https://www.ncbi.nlm.nih.gov/pubmed/37504121 http://dx.doi.org/10.3390/bios13070723 |
Sumario: | This work reports the development of a fluorescence method for the detection of poly(ADP-ribose) polymerase-1 (PARP1), in which a phenylboronic acid-modified fluorescein isothiocyanate dye (FITC-PBA) was used to recognize the formed poly(ADP-ribose) (PAR) polymer. The detection system was designed by conjugating recombinant streptavidin (rSA) with PARP1-specific double-stranded DNA (dsDNA) through streptavidin–biotin interaction. Capture of PARP1 via rSA–biotin–dsDNA allowed for the poly-ADP-ribosylation (PARylation) of both rSA and PARP1 in a homogeneous solution. The resulting rSA–biotin–dsDNA/PAR conjugates were then captured and separated via the commercialized nitrilotriacetic acid–nickel ion-modified magnetic bead (MB-NTA-Ni) through the interaction between NTA–Ni on MB surface and oligohistidine (His(6)) tag in rSA. The PAR polymer could capture the dye of FITC-PBA through the borate ester interaction between the boronic acid moiety in PBA and the cis-diol group in ribose, thus causing a decrease in fluorescence signal. The PARylation of streptavidin and the influence of steric hindrance on PARylation efficiency were confirmed using reasonable detection strategies. The method showed a wide linear range (0.01~20 U) and a low detection limit (0.01 U). This work should be valuable for the development of novel biosensors for the detection of poly(ADP-ribose) polymerases and diol-containing species. |
---|