Cargando…

Application of I-Optimal Design for Modeling and Optimizing the Operational Parameters of Ibuprofen Granules in Continuous Twin-Screw Wet Granulation

The continuous twin-screw wet granulation (TSWG) process was investigated and optimized with prediction-oriented I-optimal designs. The I-optimal designs can not only obtain a precise estimation of the parameters that describe the effect of five input process parameters, including the screw speed, l...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jie, Tian, Geng, Qu, Haibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377492/
https://www.ncbi.nlm.nih.gov/pubmed/37509668
http://dx.doi.org/10.3390/biomedicines11072030
Descripción
Sumario:The continuous twin-screw wet granulation (TSWG) process was investigated and optimized with prediction-oriented I-optimal designs. The I-optimal designs can not only obtain a precise estimation of the parameters that describe the effect of five input process parameters, including the screw speed, liquid-to-solid (L/S) ratio, TSWG feed rate, and numbers of the 30° and 60° mixing elements, on the granule quality in a TSWG process, but it can also provide a prediction of the response to determine the optimum operating conditions. Based on the constraints of the desired granule properties, a design space for the TSWG was determined, and the ranges of the operating parameters were defined. An acceptable degree of prediction was confirmed through validation experiments, demonstrating the reliability and effectiveness of using the I-optimal design method to study the TSWG process. The I-optimal design method can accelerate the screening and optimization of the TSWG process.