Cargando…

Airway Epithelium Senescence as a Driving Mechanism in COPD Pathogenesis

Cellular senescence is a state of permanent cell cycle arrest triggered by various intrinsic and extrinsic stressors. Cellular senescence results in impaired tissue repair and remodeling, loss of physiological integrity, organ dysfunction, and changes in the secretome. The systemic accumulation of s...

Descripción completa

Detalles Bibliográficos
Autores principales: Bateman, Georgia, Guo-Parke, Hong, Rodgers, Aoife M., Linden, Dermot, Bailey, Melanie, Weldon, Sinéad, Kidney, Joseph C., Taggart, Clifford C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377597/
https://www.ncbi.nlm.nih.gov/pubmed/37509711
http://dx.doi.org/10.3390/biomedicines11072072
Descripción
Sumario:Cellular senescence is a state of permanent cell cycle arrest triggered by various intrinsic and extrinsic stressors. Cellular senescence results in impaired tissue repair and remodeling, loss of physiological integrity, organ dysfunction, and changes in the secretome. The systemic accumulation of senescence cells has been observed in many age-related diseases. Likewise, cellular senescence has been implicated as a risk factor and driving mechanism in chronic obstructive pulmonary disease (COPD) pathogenesis. Airway epithelium exhibits hallmark features of senescence in COPD including activation of the p53/p21WAF1/CIP1 and p16INK4A/RB pathways, leading to cell cycle arrest. Airway epithelial senescent cells secrete an array of inflammatory mediators, the so-called senescence-associated secretory phenotype (SASP), leading to a persistent low-grade chronic inflammation in COPD. SASP further promotes senescence in an autocrine and paracrine manner, potentially contributing to the onset and progression of COPD. In addition, cellular senescence in COPD airway epithelium is associated with telomere dysfunction, DNA damage, and oxidative stress. This review discusses the potential mechanisms of airway epithelial cell senescence in COPD, the impact of cellular senescence on the development and severity of the disease, and highlights potential targets for modulating cellular senescence in airway epithelium as a potential therapeutic approach in COPD.