Cargando…
Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2
Human Fe(II)/α-ketoglutarate-dependent dioxygenase ABH2 plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases, e.g., N(1)-methyladenine (m(1)A), N(3)-methylcytosine (m(3)C), and some etheno derivatives. Moreover, ABH2 is capable of a less efficient oxidation...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377887/ https://www.ncbi.nlm.nih.gov/pubmed/37508504 http://dx.doi.org/10.3390/cells12141839 |
_version_ | 1785079629140197376 |
---|---|
author | Davletgildeeva, Anastasiia T. Tyugashev, Timofey E. Zhao, Mingxing Kuznetsov, Nikita A. Ishchenko, Alexander A. Saparbaev, Murat Kuznetsova, Aleksandra A. |
author_facet | Davletgildeeva, Anastasiia T. Tyugashev, Timofey E. Zhao, Mingxing Kuznetsov, Nikita A. Ishchenko, Alexander A. Saparbaev, Murat Kuznetsova, Aleksandra A. |
author_sort | Davletgildeeva, Anastasiia T. |
collection | PubMed |
description | Human Fe(II)/α-ketoglutarate-dependent dioxygenase ABH2 plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases, e.g., N(1)-methyladenine (m(1)A), N(3)-methylcytosine (m(3)C), and some etheno derivatives. Moreover, ABH2 is capable of a less efficient oxidation of an epigenetic DNA mark called 5-methylcytosine (m(5)C), which typically is a specific target of DNA dioxygenases from the TET family. In this study, to elucidate the mechanism of the substrate specificity of ABH2, we investigated the role of several active-site amino acid residues. Functional mapping of the lesion-binding pocket was performed through the analysis of the functions of Tyr122, Ile168, and Asp173 in the damaged base recognition mechanism. Interactions of wild-type ABH2, or its mutants Y122A, I168A, or D173A, with damaged DNA containing the methylated base m(1)A or m(3)C or the epigenetic marker m(5)C were analyzed by molecular dynamics simulations and kinetic assays. Comparative analysis of the enzymes revealed an effect of the substitutions on DNA binding and on catalytic activity. Obtained data clearly demonstrate the effect of the tested amino acid residues on the catalytic activity of the enzymes rather than the DNA-binding ability. Taken together, these data shed light on the molecular and kinetic consequences of the substitution of active-site residues for the mechanism of the substrate recognition. |
format | Online Article Text |
id | pubmed-10377887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103778872023-07-29 Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2 Davletgildeeva, Anastasiia T. Tyugashev, Timofey E. Zhao, Mingxing Kuznetsov, Nikita A. Ishchenko, Alexander A. Saparbaev, Murat Kuznetsova, Aleksandra A. Cells Article Human Fe(II)/α-ketoglutarate-dependent dioxygenase ABH2 plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases, e.g., N(1)-methyladenine (m(1)A), N(3)-methylcytosine (m(3)C), and some etheno derivatives. Moreover, ABH2 is capable of a less efficient oxidation of an epigenetic DNA mark called 5-methylcytosine (m(5)C), which typically is a specific target of DNA dioxygenases from the TET family. In this study, to elucidate the mechanism of the substrate specificity of ABH2, we investigated the role of several active-site amino acid residues. Functional mapping of the lesion-binding pocket was performed through the analysis of the functions of Tyr122, Ile168, and Asp173 in the damaged base recognition mechanism. Interactions of wild-type ABH2, or its mutants Y122A, I168A, or D173A, with damaged DNA containing the methylated base m(1)A or m(3)C or the epigenetic marker m(5)C were analyzed by molecular dynamics simulations and kinetic assays. Comparative analysis of the enzymes revealed an effect of the substitutions on DNA binding and on catalytic activity. Obtained data clearly demonstrate the effect of the tested amino acid residues on the catalytic activity of the enzymes rather than the DNA-binding ability. Taken together, these data shed light on the molecular and kinetic consequences of the substitution of active-site residues for the mechanism of the substrate recognition. MDPI 2023-07-13 /pmc/articles/PMC10377887/ /pubmed/37508504 http://dx.doi.org/10.3390/cells12141839 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Davletgildeeva, Anastasiia T. Tyugashev, Timofey E. Zhao, Mingxing Kuznetsov, Nikita A. Ishchenko, Alexander A. Saparbaev, Murat Kuznetsova, Aleksandra A. Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2 |
title | Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2 |
title_full | Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2 |
title_fullStr | Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2 |
title_full_unstemmed | Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2 |
title_short | Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2 |
title_sort | individual contributions of amido acid residues tyr122, ile168, and asp173 to the activity and substrate specificity of human dna dioxygenase abh2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377887/ https://www.ncbi.nlm.nih.gov/pubmed/37508504 http://dx.doi.org/10.3390/cells12141839 |
work_keys_str_mv | AT davletgildeevaanastasiiat individualcontributionsofamidoacidresiduestyr122ile168andasp173totheactivityandsubstratespecificityofhumandnadioxygenaseabh2 AT tyugashevtimofeye individualcontributionsofamidoacidresiduestyr122ile168andasp173totheactivityandsubstratespecificityofhumandnadioxygenaseabh2 AT zhaomingxing individualcontributionsofamidoacidresiduestyr122ile168andasp173totheactivityandsubstratespecificityofhumandnadioxygenaseabh2 AT kuznetsovnikitaa individualcontributionsofamidoacidresiduestyr122ile168andasp173totheactivityandsubstratespecificityofhumandnadioxygenaseabh2 AT ishchenkoalexandera individualcontributionsofamidoacidresiduestyr122ile168andasp173totheactivityandsubstratespecificityofhumandnadioxygenaseabh2 AT saparbaevmurat individualcontributionsofamidoacidresiduestyr122ile168andasp173totheactivityandsubstratespecificityofhumandnadioxygenaseabh2 AT kuznetsovaaleksandraa individualcontributionsofamidoacidresiduestyr122ile168andasp173totheactivityandsubstratespecificityofhumandnadioxygenaseabh2 |