Cargando…
ROP16 of Toxoplasma gondii Inhibits Innate Immunity by Triggering cGAS-STING Pathway Inactivity through the Polyubiquitination of STING
cGAS-STING signaling is a major pathway in inducing type Ⅰ IFN, which plays a crucial role in the defense against T. gondii infection. In contrast, T. gondii develops multiple strategies to counteract the host defense, causing serious diseases in a wide range of hosts. Here, we demonstrate that T. g...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378213/ https://www.ncbi.nlm.nih.gov/pubmed/37508526 http://dx.doi.org/10.3390/cells12141862 |
Sumario: | cGAS-STING signaling is a major pathway in inducing type Ⅰ IFN, which plays a crucial role in the defense against T. gondii infection. In contrast, T. gondii develops multiple strategies to counteract the host defense, causing serious diseases in a wide range of hosts. Here, we demonstrate that T. gondii rhoptry protein 16 (ROP16) dampens type I interferon signaling via the inhibition of the cGAS (cyclic GMP-AMP synthase) pathway through the polyubiquitination of STING. Mechanistically, ROP16 interacts with STING through the SignalP domain and inhibits the K63-linked ubiquitination of STING in an NLS (nuclear localization signal)-domain-dependent manner. Consequently, knocking out the ROP16 in PRU tachyzoites promotes the STING-mediated production of type I IFNs and limits the replication of T. gondii. Together, these findings describe a distinct pathway where T. gondii exploits the ubiquitination of STING to evade host anti-parasite immunity, revealing new insights into the interaction between the host and parasites. |
---|