Cargando…
Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions
This study investigated the interfacial adsorption and emulsifying performance of glycated β-conglycinin (7S) with D-galactose (Gal) at various times. Results indicated that glycation increased the particle sizes and zeta potentials of glycated 7S by inducing subunit dissociation. Glycation destroye...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379661/ https://www.ncbi.nlm.nih.gov/pubmed/37509797 http://dx.doi.org/10.3390/foods12142706 |
_version_ | 1785080049639096320 |
---|---|
author | Zhang, Hongjian Tian, Yan Pan, Siyi Zheng, Lianhe |
author_facet | Zhang, Hongjian Tian, Yan Pan, Siyi Zheng, Lianhe |
author_sort | Zhang, Hongjian |
collection | PubMed |
description | This study investigated the interfacial adsorption and emulsifying performance of glycated β-conglycinin (7S) with D-galactose (Gal) at various times. Results indicated that glycation increased the particle sizes and zeta potentials of glycated 7S by inducing subunit dissociation. Glycation destroyed the tertiary structures and transformed secondary structures from an ordered one to a disordered one, leading to the more flexible structures of glycated 7S compared with untreated 7S. All these results affected the structural unfolding and rearrangement of glycated 7S at the oil/water interface. Therefore, glycated 7S improved interfacial adsorption and formed an interfacial viscoelasticity layer, increasing emulsifying performance to stabilize high internal phase emulsions (HIPE) with self-supportive structures. Furthermore, the solid gel-like network of HIPE stabilized by glycated 7S led to emulsification stability. This result provided new ideas to improve the functional properties of plant proteins by changing the interfacial structure. |
format | Online Article Text |
id | pubmed-10379661 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103796612023-07-29 Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions Zhang, Hongjian Tian, Yan Pan, Siyi Zheng, Lianhe Foods Article This study investigated the interfacial adsorption and emulsifying performance of glycated β-conglycinin (7S) with D-galactose (Gal) at various times. Results indicated that glycation increased the particle sizes and zeta potentials of glycated 7S by inducing subunit dissociation. Glycation destroyed the tertiary structures and transformed secondary structures from an ordered one to a disordered one, leading to the more flexible structures of glycated 7S compared with untreated 7S. All these results affected the structural unfolding and rearrangement of glycated 7S at the oil/water interface. Therefore, glycated 7S improved interfacial adsorption and formed an interfacial viscoelasticity layer, increasing emulsifying performance to stabilize high internal phase emulsions (HIPE) with self-supportive structures. Furthermore, the solid gel-like network of HIPE stabilized by glycated 7S led to emulsification stability. This result provided new ideas to improve the functional properties of plant proteins by changing the interfacial structure. MDPI 2023-07-14 /pmc/articles/PMC10379661/ /pubmed/37509797 http://dx.doi.org/10.3390/foods12142706 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Hongjian Tian, Yan Pan, Siyi Zheng, Lianhe Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions |
title | Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions |
title_full | Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions |
title_fullStr | Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions |
title_full_unstemmed | Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions |
title_short | Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions |
title_sort | glycation improved the interfacial adsorption and emulsifying performance of β-conglycinin to stabilize the high internal phase emulsions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379661/ https://www.ncbi.nlm.nih.gov/pubmed/37509797 http://dx.doi.org/10.3390/foods12142706 |
work_keys_str_mv | AT zhanghongjian glycationimprovedtheinterfacialadsorptionandemulsifyingperformanceofbconglycinintostabilizethehighinternalphaseemulsions AT tianyan glycationimprovedtheinterfacialadsorptionandemulsifyingperformanceofbconglycinintostabilizethehighinternalphaseemulsions AT pansiyi glycationimprovedtheinterfacialadsorptionandemulsifyingperformanceofbconglycinintostabilizethehighinternalphaseemulsions AT zhenglianhe glycationimprovedtheinterfacialadsorptionandemulsifyingperformanceofbconglycinintostabilizethehighinternalphaseemulsions |