Cargando…
Deep Camera–Radar Fusion with an Attention Framework for Autonomous Vehicle Vision in Foggy Weather Conditions
AVs are affected by reduced maneuverability and performance due to the degradation of sensor performances in fog. Such degradation can cause significant object detection errors in AVs’ safety-critical conditions. For instance, YOLOv5 performs well under favorable weather but is affected by mis-detec...
Autores principales: | Ogunrinde, Isaac, Bernadin, Shonda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383339/ https://www.ncbi.nlm.nih.gov/pubmed/37514550 http://dx.doi.org/10.3390/s23146255 |
Ejemplares similares
-
Analysis of the Influence of Foggy Weather Environment on the Detection Effect of Machine Vision Obstacles
por: Liu, Zhaohui, et al.
Publicado: (2020) -
3D Object Detection with SLS-Fusion Network in Foggy Weather Conditions
por: Mai, Nguyen Anh Minh, et al.
Publicado: (2021) -
Insulator Umbrella Disc Shedding Detection in Foggy Weather
por: Xin, Rui, et al.
Publicado: (2022) -
Coherent detection-based photonic radar for autonomous vehicles under diverse weather conditions
por: Chaudhary, Sushank, et al.
Publicado: (2021) -
Research on Driving Obstacle Detection Technology in Foggy Weather Based on GCANet and Feature Fusion Training
por: Liu, Zhaohui, et al.
Publicado: (2023)