Cargando…

Enhanced Adhesion of Copper Films on Fused Silica Glass Substrate by Plasma Pre-Treatment

A non-thermal atmospheric jet plasma pre-treatment technique was introduced to help the growth of extremely sticky copper films on fused silica glass substrates. A tape test was utilized to assess the bonding quality between copper films and fused silica glass substrates. AFM was used to characteriz...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Liqing, Yang, Xianli, Gao, Fei, Guan, Yongmao, Wan, Rui, Wang, Pengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383439/
https://www.ncbi.nlm.nih.gov/pubmed/37512426
http://dx.doi.org/10.3390/ma16145152
Descripción
Sumario:A non-thermal atmospheric jet plasma pre-treatment technique was introduced to help the growth of extremely sticky copper films on fused silica glass substrates. A tape test was utilized to assess the bonding quality between copper films and fused silica glass substrates. AFM was used to characterize the sample surface roughness and XPS for chemical bonding characterization. The Owens–Wendt method and a Theta Lite Optical Tensiometer were used to analyze the contact angle and surface energy. The results showed that the surface energy greatly increased from 34.6 ± 0.3 mJ·m(−2) to 55.9 ± 0.4 mJ·m(−2) after 25 s plasma pre-treatment due to the increasing Si-O and Si-N concentrations, which brought about the electrostatic force increasing at the copper/glass interface. After 25 s plasma pre-treatment, the average surface roughness (Sa) grew from 0.8 ± 0.1 nm to 2.4 ± 0.3 nm. With higher surface roughness, there were more spaces and vacancies for the copper atoms to make contact on the bonded surfaces and increase the mechanical bite force. The electrostatic force and the mechanical bite force on the interface helped to form an atomic diffusion connection layer and improved the interactions between the copper film and the glass substrate. The findings in the SEM supported the conclusions stated above. Therefore, the adhesion between copper films and fused silica glass substrates increased by about 20% by 25 s plasma pre-treatment compared with the untreated glass substrate.