Cargando…
Research on the Application of Microcast Electromagnetic Coil in an Si MEMS Bistable Recoverable Safety and Arming Device
A low-driving energy and bistable recoverable MEMS safety and arming device (S&A), based on microcasting technology and deep silicon etching technology, is proposed to meet safety system requirements. A force–electromagnetic combination solution is constructed for the Si MEMS S&A, with param...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384045/ https://www.ncbi.nlm.nih.gov/pubmed/37512656 http://dx.doi.org/10.3390/mi14071346 |
Sumario: | A low-driving energy and bistable recoverable MEMS safety and arming device (S&A), based on microcasting technology and deep silicon etching technology, is proposed to meet safety system requirements. A force–electromagnetic combination solution is constructed for the Si MEMS S&A, with parameters and strength verified, ultimately achieving an S&A size of (13 × 13 × 0.4) mm. Additionally, a low-driving energy U-shaped electromagnetic coil (USEC) model is designed using microcasting technology, and an electrical–magnetic–mechanical coupling mathematical model is established to explore the relationship between design parameters and driving capacity and reliability. With a driving power of 8 V/0.5 A, the model achieves a stable electromagnetic driving force of 15 mN with a travel distance of 0.5 mm. Finally, the fabrication and testing of the USEC and S&A are carried out, with driving capability and S&A disarming ability tests conducted to verify the feasibility of the system design. Compared to the existing S&A, this scheme has the advantages of low-driving energy, recoverability, fast response speed, and strong adaptability. |
---|