Cargando…
Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying
We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384596/ https://www.ncbi.nlm.nih.gov/pubmed/37514040 http://dx.doi.org/10.3390/pharmaceutics15071854 |
_version_ | 1785081196286312448 |
---|---|
author | Ko, Suk Kyu Björkengren, Gabriella Berner, Carolin Winter, Gerhard Harris, Pernille Peters, Günther H. J. |
author_facet | Ko, Suk Kyu Björkengren, Gabriella Berner, Carolin Winter, Gerhard Harris, Pernille Peters, Günther H. J. |
author_sort | Ko, Suk Kyu |
collection | PubMed |
description | We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipient formulations at room temperature, (ii) the ice-growth process, (iii)–(iv) the partially solvated and fully dried formulations, and (v) the reconstitution. Furthermore, coarse-grained (CG) simulations were employed to explore the protein-aggregation process in the presence of arginine. By using a coarse-grained representation, we could observe the collective behavior and interactions between protein molecules during the aggregation process. The CG simulations revealed that the presence of arginine prevented intermolecular interactions of the catalytic domain of Reteplase, thus reducing the aggregation propensity. This suggests that arginine played a stabilizing role by interacting with protein-specific regions. From the freeze-drying simulations, we could identify several protein-specific events: (i) collapse of the domain structure, (ii) recovery of the drying-induced damages during reconstitution, and (iii) stabilization of the local aggregation-prone region via direct interactions with excipients. Complementary to the simulations, we employed nanoDSF, size-exclusion chromatography, and CD spectroscopy to investigate the effect of the freeze-drying process on the protein structure and stability. |
format | Online Article Text |
id | pubmed-10384596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103845962023-07-30 Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying Ko, Suk Kyu Björkengren, Gabriella Berner, Carolin Winter, Gerhard Harris, Pernille Peters, Günther H. J. Pharmaceutics Article We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipient formulations at room temperature, (ii) the ice-growth process, (iii)–(iv) the partially solvated and fully dried formulations, and (v) the reconstitution. Furthermore, coarse-grained (CG) simulations were employed to explore the protein-aggregation process in the presence of arginine. By using a coarse-grained representation, we could observe the collective behavior and interactions between protein molecules during the aggregation process. The CG simulations revealed that the presence of arginine prevented intermolecular interactions of the catalytic domain of Reteplase, thus reducing the aggregation propensity. This suggests that arginine played a stabilizing role by interacting with protein-specific regions. From the freeze-drying simulations, we could identify several protein-specific events: (i) collapse of the domain structure, (ii) recovery of the drying-induced damages during reconstitution, and (iii) stabilization of the local aggregation-prone region via direct interactions with excipients. Complementary to the simulations, we employed nanoDSF, size-exclusion chromatography, and CD spectroscopy to investigate the effect of the freeze-drying process on the protein structure and stability. MDPI 2023-06-30 /pmc/articles/PMC10384596/ /pubmed/37514040 http://dx.doi.org/10.3390/pharmaceutics15071854 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ko, Suk Kyu Björkengren, Gabriella Berner, Carolin Winter, Gerhard Harris, Pernille Peters, Günther H. J. Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying |
title | Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying |
title_full | Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying |
title_fullStr | Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying |
title_full_unstemmed | Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying |
title_short | Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying |
title_sort | combining molecular dynamics simulations and biophysical characterization to investigate protein-specific excipient effects on reteplase during freeze drying |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384596/ https://www.ncbi.nlm.nih.gov/pubmed/37514040 http://dx.doi.org/10.3390/pharmaceutics15071854 |
work_keys_str_mv | AT kosukkyu combiningmoleculardynamicssimulationsandbiophysicalcharacterizationtoinvestigateproteinspecificexcipienteffectsonreteplaseduringfreezedrying AT bjorkengrengabriella combiningmoleculardynamicssimulationsandbiophysicalcharacterizationtoinvestigateproteinspecificexcipienteffectsonreteplaseduringfreezedrying AT bernercarolin combiningmoleculardynamicssimulationsandbiophysicalcharacterizationtoinvestigateproteinspecificexcipienteffectsonreteplaseduringfreezedrying AT wintergerhard combiningmoleculardynamicssimulationsandbiophysicalcharacterizationtoinvestigateproteinspecificexcipienteffectsonreteplaseduringfreezedrying AT harrispernille combiningmoleculardynamicssimulationsandbiophysicalcharacterizationtoinvestigateproteinspecificexcipienteffectsonreteplaseduringfreezedrying AT petersguntherhj combiningmoleculardynamicssimulationsandbiophysicalcharacterizationtoinvestigateproteinspecificexcipienteffectsonreteplaseduringfreezedrying |